SOFTWARE ENGINEERING LABORATORY SEL-88-004

PROCEEDINGS OF THE
THIRTEENTH ANNUAL SOFTWARE
ENGINEERING WORKSHOP

NOVEMBER 1988

(NASA-T™M=107 31 4) PRAOCESUINGS T Tt NAL-L000

TULPTOLNTH ANMUAL SOFTHART THO IV TRTNS —=TH ==
WORK SHOP (NASA)Y 343 p CegL N9 N91-10a17
uncls

T3/61 QPTG T

NASA _

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt. Maryland 20771

PROCEEDINGS
OF THE

THIRTEENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP

Organized by:

Software Engineering Laboratory
GSFC

November 30, 1988

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland

FOREWORD

The Software Engineering Laboratory (SEL) is an organization
sponsored by the National Aeronautics and Space Administration
Goddard Space Flight Center (NASA/GSFC) and created for the
purpose of investigating the effectiveness of software
engineering technologies when applied to the development of
applications software. The SEL was created in 1977 and has three
primary organizational members:

NASA/GSFC (Systems Development Branch)
The University of Maryland (Computer Sciences Department)
The Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software
development process in the GSFC environment; (2) to measure the
effect of various methodologies, tools, and models in the
process; and (3) to identify and then to apply successful
development practices. The activities, findings, and
recommendations of the SEL are recorded in the Software
Engineering Laboratory Series, a continuing series of reports
that includes this document.

Single copies of this document can be obtained from:

NASA/Goddard Space Flight Center
Systems Development Branch

Code 552

Greenbelt, Maryland 20771

. i1
Ao AR LSS S MY, Sl 1

A A I Do e Py peey
FRERA R USRIV L R A ST AT P T IR 1S AP

PAGE__ [/ INTENTIONALLY BLANK

AGENDA

THIRTEENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP
NASA/GODDARD SPACE FLIGHT CENTER

8:00 a.m.

8:45 a.m.

9:00 a.n.

10:30 a.nm.

11:00 a.m.

12:30 p.m.

BUILDING 8 AUDITORIUM
NOVEMBER 30, 1988

Registration -~ 'Sign-In!
Coffee, Donuts

INTRODUCTORY REMARKS

Session No. 1

"Evolving Impacts of
Ada on a Production
Environment"

"Measuring/Reusing and
Maintaining Ada
Software"

"The Software Management
Environment"

BREAK

Session No. 2

“"A Communication
Channel Model of
the Software Process"

"Knowledge-Based
Assistance in Costing the
Space Station Data
Management Systen"

"Software Sizing, Cost

Estimation and Scheduling"

LUNCH

1 OFHMED

Frank E. McGarry
(NASA/GSFC)

Topic: Studies
and Experiments
in the SEL

Frank McGarry
(NASA/GSFC)
Linda Esker and
Kelvin Quimby
(csc)

Vic Basili and
Marv Zelkowitz
(Univ. of MD)

Jon Valett
(NASA/GSFC)
Bill Decker and
John Buell (CSC)

Topic: Software
Models
Discussant:

Jerry Page (CSC)

Robert Tausworthe
(JPL)

Troy Henson and
Kyle Rone (IBM)

William Cheadle
(Martin Marietta)

BARE_ LV INTENTIQNALLY BLANK

1:30 p.m.

3:00 p.m.

3:30 p.m.

5:00 p.m.

AGENDA (Con't)

Session No. 3

"Reverse Engineering:
An Aid in Understanding”

"Ada Software Productivity
Analysis"

"Experiences with Ada in
an Embedded System"

BREAK

Session No. 4

"A Practical Approach to
Object Based Requirements
Analysis"

"A Modernized PDL Approach
for Ada Software Development"

"Representing Object-Oriented
Specifications and Designs

with Extended Data Flow
Notation"

ADJOURN

vii

Topic: Study of
Software Products

Discussant:
John Musa
(Bell/Labs)

Hasan Sayani
(ASTEC)

Jairus M. Hihn,
Hamid Habib-Agahi
and Shan Malhotra
(JPL)

Robert LaBaugh
(Martin Marietta)

Topic: Tools
Discussant:
Mike Gardner
(csc)

Daniel W. Drew
Michael Bishop
(Unisys)

Paul Usavage, Jr
(GE)

Jon Franklin
Buser and
Paul T. Ward
(Software
Development
Concepts)

RAGE_ | ' INTENTIONALLY BLANK

SUMMARY OF THE THIRTEENTH ANNUAL SOFTWARE
ENGINEERING WORKSHOP

By
Linda Landis

COMPUTER SCIENCES CORPORATION

IR AL
INEERIN RKSHOP

On November 30, 1988, approximately 450 attendees gathered
in Building 8 at the National Aeronautics and Space Admini-
stration (NASA)/Goddard Space Flight Center (GSFC) for the
Thirteenth Annual Software Engineering Workshop. The meet-
ing is held each year as a forum for information exchange in
thé measurement, utilization, and evaluation of software
methods, models, and tools. It is sponsored by the Software
Engineering Laboratory (SEL), a cooperative effort of NASA/
GSFC, the University of Maryland, and Computer Sciences
Corporation (CSC). Among the audience were representatives
from 6 universities, 22 government agencies, 8 NASA centers,
and 78 private corporations and institutions. Twelve papers
were presented in four sessions:

° Studies and Experiments in the SEL
® Software Models

° Study of Software Products

o Tools

Speakers accepted questions after their presentations and
during panel discussions at the end of each session. Re-
sponses and comments elicited from audience members resulted
in a lively exchange.

- N EL

Frank McGarry of GSFC introduced the workshop and opened the
session. In his presentation (Evolving Impacts of Ada on a
Production Environment), McGarry addressed five major ques-
tions:

° What is the impact of Ada on development profiles?

° What are its effects on productivity, reliability,
and maintainability?

L. Landis
CSC
1 of 15

) How does the impact change from first-time Ada use
through third-time?

° Do we use Ada differently over time?
° How long does it take to reap the promised benefits
of Ada?

McGarry described the use of Ada on NASA/GSFC Flight Dynam-
ics Division (FDD) projects and characterized each project
by level of Ada experience. He found that the first Ada
project had a phase distribution similar to that of a paral-
lel FORTRAN project for predesign, design, code, and test as
a percentage of total effort. The predicted shift to more
effort in design did occur on subsequent Ada projects but
was not observed on projects characterized as first-time Ada
use. Productivity statistics showed that the total lines of
code (LOC) per staff day improved significantly from first-
time projects to those of third-time Ada use. The trend in
number of statements per staff day was also up, although the
FORTRAN project's statistic remained higher.

McGarry emphasized that the use of Ada features changed
appreciably with experience; the use of generics, strong
typing, and packages increased while the use of tasking de-
clined. He also concluded that the use of Ada reduces in-
terface errors. 1In summary, McGarry noted the following:

° Overhead cost of Ada usage was 30 percent in
first-time projects, but significant improvement
was noticed in second- and third-time projects.

[Reliability was similar to FORTRAN initially but
improved with experience.

® Positive trends in reuse were noted, already
exceeding FORTRAN.

L. Landis
CSC
2 of 15

® Ada projects have a higher total LOC than FORTRAN
projects, but the number of statements is approxi-

mately equal.

® The use of Ada features evolved with experience and
appears related to improved productivity and reli-
ability, although certain features were found to be
inappropriate for the FDD environment.

The second presentation (Toward a Reuse-Oriented Software
Evolution Process) was given by Victor Basili of the Univer-

sity of Maryland. The problem Basili posed was that, al-
though reuse of experience is key to productivity and
quality, current reuse practices are ad hoc, implicit, and at
the code level. Reuse, he stated, must be built into the
software development process, and models of the reuse envi-
ronment must be constructed. Reuse in the traditional,
project-specific, SEL software evolution environment is not
only explicit through code, Basili found, but is implicit
through people; the same processes, management, and support
tools have been used by SEL projects over a long period.

Basili proposed a reuse-oriented software evolution model
that would supplant the traditional model. It would incor-
porate improvements in software development by recording
learning in a repository of well-classified experience (the
experience base). The goal would be to maximize the use of
the recorded information during project planning and execu-
tion. The experience would be massaged off-line to gener-
alize the information gathered and would be tailored on-line
for specific project applications as needed. Formalization
would encode the experience in a more precise, understand-
able manner.

Basili concluded that integrated models are needed for all

activities to achieve maximum reuse and minimum tailoring.

Models and project goals are also required to develop useful
L. Landis

CSC
3 of 15

measures of reuse, as opposed to source LOC (SLOC). In the
SEL, the movement to Ada has incurred costs in the short
run, but explicit reuse characterization can and does help.

Jon Valett of GSFC presented the third paper of the session
(The Software Management Environment (SME)). The goals of
the SME project, Valett explained, are to integrate experi-
ence and knowledge from completed software projects and feed
it back to management. The process is automated via a tool
set that uses historical information about software develop-
ment. The SME compares development profiles of current ver-
sus past projects; predicts cost, reliability, and error
rates; analyzes the strengths and weaknesses of projects;
and provides expert guidance regarding overall project
quality.

The SME is constructed in Pascal on a VAX-11/780 computer
connected to IBM personal computers (PCs). 1Its components
are the SEL database, models and measures created as a re-
sult of SEL research, and software development rules. The
SEL database contains data on resource utilization, project
growth, and methodology characterization. The rules are
based on information obtained from experienced managers and
from analyses of collected information and models.

Valett then showed how the SME would respond to a sample
question: “How does my project compare with other projects
in respect to number of errors?™ The result was a graph of
the average project error rate versus that of the current
project. The system could analyze the error data and pre-
dict key project information. If the error rate was abnor-
mally low, such an analysis might display three possible
causes: insufficient testing, experienced team, or problem
less difficult than expected. The results of prediction
would: be a graph showing the extrapolated error rate at proj-
ect conclusion. Valett also displayed screens from the SME

L. Landis

CSC
4 of 15

as it has been currently developed, in which actual versus
expected growth in a typical system were contrasted. Valett
noted that the system is designed to incorporate dynamic
development of models and rules and an improved knowledge of

the environment.

In response to a question during the panel session pertain-
ing to the cost of data collection, McGarry said that the
overhead cost of collecting SEL metrics was 3 to 4 percent,
8 to 10 percent for processing the data, and up to 25 per-
cent for analysis. No information on Ada maintainability
was yet available, and no attempt had been made to incorpo-
rate Ada in a real-time system. Asked why the design error
rate on first-time Ada projects was higher than on FORTRAN
projects, McGarry noted that the FORTRAN design process was
highly familiar whereas the Ada design process was new.

When asked how increased Ada knowledge was distinguished
from experience in an application, McGarry answered that it
was not, and that the relative importance of application
versus language experience was not yet understood. Respond-
ing to the question, "Have you looked beyond technical proc-
esses to attitude and institutional roadblocks?*, Basili
observed that there is no current institutional motivation
for reuse; in fact, there is motivation (in contracts) for
non-reuse.

ESST — D

In the first presentation, Robert Tausworthe of the Jet
Propulsion Laboratory (JPL) likened the process of software
development to a noisy channel (A_Commupnication Channel
Model of the Software Process). Over this channel--composed

of people and hardware--information flows, is transformed,
distorted, eraseé, delayed, and otherwise modified. The

problems with communication channels, Tausworthe said, are
high costs, too long a delay between need and satisfaction,

L. Landis
CSC
S5of 15

and a need-to-satisfaction correlation that is too difficult
to compute. To cope with noisy channels, it is necessary to

Measure and characterize the channel's parameters
Expect transmission noise

Design throughput below channel capacity

Make information resilient to channel disturbances
Transmit with greatest signal force possible
Reduce noise

Use feedback to correct errors

As axioms, Tausworthe stated that a mapping exists between
input requirements and output; that information is not cre-
ated, it is transformed or lost; that intelligence in the
channel contributes to the transformation and noise energy;
and that the product'yield results from the minimum product
specification plus the minimum for all reused parts. 1In a
product-builder channel model, the amount of information
into the design engine and factory are the same, but are
transformed. The knowledge base and catalog of inputs rep-
resent the transform engine; to the extent these are sup-
plied by automation, productivity increases. Using the
axioms, Tausworthe derived a formula for production capacity
in which the degree of reuse would ultimately determine the
bound on productivity. 1In summary, Tausworthe indicated
that the area for productivity improvement was limited, and
that the language advantage grows as long as the average
yield of reusable parts can be made to increase.

Troy Henson of IBM was the next speaker (Knowledge-Based
Assistance in Costing the Space Station Data Management Sys-
tem). He noted the many complex factors that affect a soft-
ware cost estimate: historical data, software size,
productivity, complexity, schedule, project constraints, and
criticality. The problem, Henson declared, was to increase
the productivity and reliability of software cost estimation
L. Landis

CSC
6 of 15

(SCE) by defining the process, automating the methodology,
and providing SCE courses. Currently, he said, SCE courses
are offered at IBM, and nine algorithmic PC-based tools and
a Lotus tool have been developed. The prototype tools in-
clude two expert systems: the Software Complexity Determi-
nation Assistant and the Software Criticality Assistant.

The Space Station Data Management System (SSDMS) posed
special problems in cost estimation due to its long life,
remote integration, distributed environment, phased techno-
logy insertion, etc. A costing methodology was defined in
which requirement specifications were translated to func-
tions. For each function, the size in LOC, criticality,
complexity, and release designation were specified. Produc-
tivity and verification factors were computed, and the man-
months required to accomplish the task were calculated.

Henson concluded that using the SCE tools in costing the
SSDMS improved efficiency, accuracy, and consistency. The
tools provided a foundation that may be calibrated and ex-
panded to include other areas of software system engineering
process control. Responding to questions, Henson noted that
their SCE models and database were more relevant than COCOMO
for their particular project costs.

The sixth speaker was William Cheadle of Martin Marietta
(Software Sizing, Cost Estimation and Scheduling). Cheadle
said that Martin Marietta (MMC) has been looking into soft-
ware development for 15 years and has studied the total life
cycle from the definition of a system through final inte-
gration. A number of parametric models are in use at MMC:
two versions of parametric cost estimation models, a main-
tenance model, a performance measurement model, a sizing
model, a CSCI/CPCI integration model, a risk analysis

L. Landis
CSC
7 of 15

simulation tool, and a software architecture sizing and es-
timating tool. A large database has been accumulated over
the 15-year period; it currently contains information on
over 53 projects.

The costing profile based on this historical data shows
that, on older projects developing "spaghetti®” code, 25 per-
cent of the total effort was expended by critical design
review (CDR), whereas projects using top-down methodology
expended 45 to 55 percent. Analysis of the data also re-
veals that one SLOC required an average of 2.24 hours of
effort when computed over the full project life cycle.
Cheadle added that an Ada SLOC is computed at MMC by count-
ing semicolons. In response to a question, Cheadle noted
that data from projects using rapid prototyping were going
into the models, resulting in significant cost changes.

N - F ARE_PROD

Hasan Sayani from ASTEC (Reverse Engineering:; An Aid to
Understanding) was the first speaker of the afternoon ses-

sion. Sayani defined reverse engineering as working back-
ward from any phase in the development life cycle. Without
supporting documentation, he said, the process of reverse
engineering is somewhat akin to archaeology. 1Its success
depends on recognizing that information may be lost and that
ambiguities are inevitable. Reverse engineering may be per-
formed to (1) understand the current system; (2) maintain or
change the current system; (3) determine where enhancements
to the system are needed and what their effects would be;
(4) merge one system with another by defining the common
data and interfaces; and (5) inject new technology (e.g., a
DBMS) .

Sayani described a tool containing an interpreter that ac-
cepts source code and generates program specification lan-
guage (PSL) statements. The program abstraction is then
stored in a database from which reports may be generated.
L. Landis

CSC
8 of 15

CASE tools may be used to produce a diagram of the system,
and other relevant data may be merged.

Through reverse engineering, it is possible to examine the
translated language to learn the architecture of procedure
calls and data structures. It is also possible to synthe-
size desired aspects across code units and to pinpoint prob-
lems. Sayani noted that, on one very large system under
maintenance, an 8-to-1 savings using the reverse engineering
tool was observed. Rework was vastly reduced since the rip-
ple effects of modifications could be predicted.

Sayani noted potential pitfalls in the reverse engineering
process, such as unexpected code constructs, differences in
programming styles, and diverse organizational standards.
He predicted that future technology would adapt to broader
source code input, produce sophisticated models across lan-
guages, have better CASE interfaces, and regenerate code.

The next speaker, Jairus Hine of JPL, presented a case study
of Ada projects at JPL (Ada Software Productivity Analysis),
where two main databases are used to record the size and
cost of software development: a NASA historical database
with 10 projects, and a JPL database with 4 projects. 1In
the JPL database, one project caught the eye of the re-
searchers; it had the highest productivity of all the proj-
ects examined, and it used Ada. The problem was to
determine how much of the effect was due to Ada use. Hine
first examined subsystems within this first project, then
compared Project 1 with Project 2, a similar system written

in Pascal.

Project 1 contained 500,000 LOC and used Ada and C in a pro-
totype environment. Each subsystem used different amounts
of Ada. The project was straightforward and was charac-
terized by good communication between users and competent
developers. A general rise in productivity was initially

L. Landis

CSC
9 of 15

observed as the percent of Ada used in a module increased;
however, productivity on the subsystem tasks differed
greatly. This Hine attributed to differences in Ada experi-
ence and tool and rule availability from one task to the
next. Adjusting for these environmental factors, the pro-
ductivity of the tasks was seen to be very similar, regard-
less of the amount of Ada used. When Hine grouped the tasks
into two categories, primarily Ada and primarily non-Ada, he
observed an increase of 2 LOC per day (15 percent overall)
in productivity in the Ada group. However, the normalized
productivity in Project 1 was found to be considerably lower
than that of the Pascal Project (7.4 vs 13.5 SLOC/day).

Part of this, Hine added, could be due to the Ada learning
curve and other unadjusted environmental factors. Hine hy-
pothesized that, given experienced programmers, a 10- to
25-percent increase in productivity would be possible with
Ada. Similar productivity gains, he suggested, were possi-
ble with languages other than Ada using modern, modularized
design methods.

The final speaker of the session, Robert LaBaugh of Martin
Marietta, discussed a project that successfully used Ada in
an embedded application for real-time control of a robot arm
(Experiences with Ada in an Embedded System). The objec-
tives were to use Ada, evaluating such features as tasking
performance, and to develop a generalized control system
based on the NASA reference model for control architecture,
NASREM. The application concentrated on the two lowest
levels of the NASREM architecture: the servo level, which
is closest to the hardware, and the primitive level. The
system, including all low-level hardware interfaces and con-
trollers, was developed as 11 tasks coded in standard Ada.
System performance was more than adequate; all NASREM levels
were able to execute within a single 20-millisecond control
loop.

L. Landis

CSC
10 of 15

La Baugh reported the following as lessons learned from the
project: The ability to test/debug on a host does not elim-
inate testing on the target machine. Portability with Ada
is not automatic; there are differences in tasking implemen-
tations. Public domain packages need support; the math
library worked on the development machine, but machine-
specific parameters produced errors on the target machine.
Resistance was encountered to using Ada alone for embedded
real-time applications, both from “experts” who had heard
that Ada was insufficient and from compiler and real-time

kernel vendors.

LaBaugh was asked to comment on the statement of experts
that tasking cannot be used in embedded systems. He re-
sponded that tasking worked, and that using the delay state-
ment to simulate time-slicing fixed the problem encountered
when the system was ported to the target machine. Respond-
ing to further questions, LaBaugh noted that their design
was ad hoc, based on the NASREM architecture, and that, al-
though reuse could be effective in defining NASREM layers,
they could not use generic packages while maintaining sepa-

rate task priorities.

SESSION 4 - TOOLS

The final session was introduced by Mike Gardner of CSC.
Gardner noted that the introduction of object-oriented pro-
gramming and design has raised the question, "Do we continue
to use functionally oriented methods in the requirements
analysis phase, or should we be moving to object-oriented
techniques?” This issue, he said, was the main topic to be
addressed in the fourth session.

Daniel Drew began the session with a discussion of the method
employed for requirements analysis at Unisys (A Practical

Approach to Object Based Requirements Analysis).

L. Landis
CSC
11 of 15

As a maintenance organization for the shuttle, Unisys in
Houston is interested in using Ada to rewrite or replace
existing software. They organize all requirements informa-
tion into a notebook and use the data to generate a baseline
requirements list (BRL). From the BRL, a static entity-
relationship (ER) model and object data flow diagrams (ODDs)
are created. The object-oriented design is then coded,
tested, and delivered.

Drew noted that organizing the BRL forces examination of
each requirement. Automated tracking of this list was es-
sential, but simple tools such as a word processor would
suffice. Drew said that extracting entities was straight-
forward, although identifying relationships and attributes
and leveling the ER model were not. Drew's group also dis-
covered that naming objects to support the system structure
was critical, and that a computer-aided tool was needed to
maintain the data dictionary. Drew stated that the problem
lies in representing the information, and that database
techniques such as ER modeling are appropriate. He added
that customer communication needs to be addressed and noted
that customers easily understood ODD representations.

Paul Usavage, Jr., of General Electric (GE) was the next
presenter (A Modernized PDL Approach for Ada Software
Development). The problem, he stated, was to incorporate
the benefits of Ada using an automated approach with graphic
design tools, while maintaining a high level of risk manage-
ment. As a result of their investigations, the GE team pro-
posed the following improvements to the software development
process:

°® Base the software design on the accumulated results
of structured analysis

° State requirements with data flow diagrams (DFDs)
to aid in understanding the problem

L. Landis
CSC
12 of 15

° Design using integrated graphics and program design

language (PDL)

® Edit PDL within a graphics context
o Incorporate compiled Ada interfaces
® Perform iterative refinement against graphics and

PDL together

® Produce preliminary and as-built design documents
automatically

°® Use a graphics index to PDL

° Maintain the design database via tools

The team then examined three projects to determine how well
these proposals work. Analysis of the first project showed
compilation of Ada PDL and control blocks to be inconven-
ient. Errors uncovered in compilation were mostly in syntax
rather than design, and alternative designs became less fea-
sible to generate. Analysis of the second project showed
that high-level partitioning based on DFDs worked well and
that implementation-level partitioning using PDL and com-
piled package specifications suffered from rework due to a
longer cycle time. The third project used a methodology
that was close to that proposed by the team. Analysis
showed that the project's object-oriented approach was suc-
cessful and that the use of graphics worked well.

In conclusion, Usavage noted that graphics and structure
charts work better at the high levels of abstraction and
that PDL is clearly better at a lower level. He also recom-
mended that a PDL processor be integrated with graphics in a
CASE environment. In response to the comment that most peo-
ple treat structured analysis and object-oriented design as
mutually exclusive, Usavage observed that, although it was
not easy to go from one to the other, doing so was a power-
ful tool for understanding the problem.

L. Landis
CSC
13 of 15

The last speaker was Jon Franklin Buser of Software Develop-

ment Concepts (SDC) (Representing Object-Oriented Specifica-
tions and Designs With Extended Data Flow Notation). A

current goal of SDC, said Buser, is to develop ways to rep-
resent object-oriented design and specifications with DFDs.
DFDs have certain advantages: they are supported by many
CASE tools, they are neither language nor operating-system
specific, and many software engineers already have a working
understanding of the methodology. There are also some prob-
lems: CASE tools enforce unique names, which conflicts with
component reuse; level-balancing conflicts with building
generic components that have unused access functions; and
commonly used partitioning strategies can lead to the loss
of the concept of software objects.

Using the example of a simple data storage and reporting
system, Buser suggested several new partitioning conventions
for representing objects:

° Group all processes that operate on the same
real-world object

° Group all data flows associated with the same proc-
ess or routine

e Name the combined flow for access routines
] Use a double arrow for access routine I/0Os

Buser showed an improved diagram for the sample system, in
which two-way flows were named to identify the object with
which the flow was associated. He concluded by stating that
more work with these conventions was needed. CASE tools
should be enhanced to support reuse and inheritance, whereas
they currently defeat these efforts. Browsers are needed
for scanning libraries of reusable components documented by
DFDs. Asked if it is difficult to get people to think in
terms of objects, Buser responded that by following the

L. Landis
CSC
14 of 15

development methodology that SDC taught--first building an
information model, then examining the behavior patterns of
the objects using state-machine diagrams, and lastly build-
ing the process models--it was possible to sidestep issues

of an established mindset.

In the panel session, the question was raised as to how to
group objects with functions correctly. Every store and
flow is a candidate operation for an object, Usavage con-
tributed, noting that a colleague has developed a mechanical
transfer process changing arrows to bubbles and vice versa.
Mike Gardner then asked if the Unisys approach was not re-
moving information by not showing operations in some way,
with which Drew agreed, although he felt that functionality

was apparent in an ODD.

L. Landis
CSC
15 of 15

PANEL #1

STUDIES AND EXPERIMENTS IN THE SEL

F. McGarry, NASA/GSFC
V. Basili, University of Maryland
J. Valett, NASA/GSFC

N91-10607

o)
EVOLVING IMPACT OF ADA ON A ffjﬂc
PRODUCTION SOFTWARE ENVIRONMENT

F. McGarry (NASA/GSFC)
L. Esker (CSC) N
K. Quimby (CSC) -

1.0 BACKGROUND (Chart 1)

Since 1985, the Software Engineering Laboratory (SEL) has been
studying the impact of Ada and Ada-related technologies on the
software development of production projects within the Flight
Dynamics Division (FDD) at NASA/GSFC. Until then, all software
development projects had used FORTRAN as the primary implemen-
tation language. The Ada development work began with a pilot
project and a research project that paralleled a production
FORTRAN development project (References 1 and 2). After this
initial Ada experience, several later production projects were
developed in Ada. For each project, the SEL has collected such
detailed information as resource data, error data, component
information, methodology, and project characteristics, so that
the SEL could study the evolution of the use of Ada itself and
the actual characteristics of the Ada development process

(Reference 3).

Analysis of the Ada projects has led personnel to document
lessons learned during the development of Ada projects
(References 4 through 7). These lessons have provided valuable
insight into the impact of Ada, especially in the following

areas:

F. McGarry
NASA/GSFC
1 of 33

1. The impact of Ada on the software development process,
that is, the impact Ada has on such measures as productivity,

reliability, and maintainability.

2. The impact of Ada over time, as shown by the differences

between the first, second, and third Ada projects.

3. The use of Ada and Ada features as the development environ-

ment gains more experience in using Ada.

4. The timeframe for realizing the benefits of using Ada.

1.1 ADA PROJECTS STUDIED (Chart 2)

Ada use within the FDD began in January 1985 with the GRODY
project. As part of the preparation for developing this systen,
personnel first participated in a practice Ada project by
implementing an electronic mail system (EMS). These two projects

actually represent a first Ada experience.

After the GRODY project was well under way, two new Ada simulator
projects for the GOES satellite began. GOADA, the dynamics
simulator, and GOESIM, the telemetry simulator, collectively
represent a second major experience with Ada. They are
considered second projects because (1) some team members had
previous experience in developing systems in Ada and (2) these
two projects could draw on lessons learned from GRODY. Not only
were the staffing profiles of the two GOES simulator teamns
different from the GRODY team, but the two GOES teams began using
additional software tools available within the DEC Ada

development environment.

F. McGarry
NASA/GSFC
2 of 33

Late in 1987 and 1988, two more projects, UARSTELS and Build 4 of
FDAS began; these projects represent a third distinct Ada
experience. Currently, two more Ada projects are in their early
stages: EUVEDSIM and EUVETELS, but these projects are very early

in their lifecycles and are not yet available for study.

1.2 PROJECT STATUS AND CHARACTERISTICS (Chart 3)

All totaled, Ada has been used on eight projects in the flight
dynamics area. Two projects (EMS and GRODY) are completed; three
(GOADA, GOESIM, and FDAS) are well into system testing; and one
(UARSTELS) is in the implementation phase. The other two
projects (EUVEDSIM and EUVETELS) are in the early requirements
analysis phase. These projects range from nearly 6K to 163K SLOC
in size, where SLOC is total source lines of code including
comments, blanks, newly developed code, and reused code. These
projects have required or are expected to require from 4 to 36
months to complete and had from three to seven people working on
them. Although GRODY lasted for 36 months, it should be noted
that most personnel on this project did not work fulltime on its
development. The small EMS project could have been completed

by 2 or 3 people; but since it was part of the Ada training for
the GRODY project, all GRODY developers participated in some part
of the EMS project.

2.0 ADA EVOLUTION

2.1 TEAM EXPERIENCE AND DEVELOPMENT ENVIRONMENT (Chart 4)

F. McGarry
NASA/GSFC
3 of 33

Of the eight Ada projects currently under way, six projects have
progressed far enough to be studied: EMS, GRODY, GOADA, GOESIM,
FDAS, and UARSTELS. All six of the projects studied have been
staffed with personnel with a similar level of software develop-
ment experience, an average of 4 to 5 years. Except for UARSTELS,
each project also had personnel with a similar level of experi-
ence in the application. To date, the SEL has not observed any

impact due to differences in team experience between projects.

It is also too early to observe any differences in the effect of
varied levels of Ada experience on project development. The
number of people who are formally trained in Ada and/or the
number of those who have been on previous Ada projects is still
too small. Only the first Ada projects have been completed.
Some personnel on those projects have contributed to current,
ongoing projects; however, there are not enough people in the
environment, even on the most recent Ada projects, to signifi-
cantly change the ratio of experienced Ada personnel to those
with no Ada experience.

The use of tools has evolved somewhat from the first Ada
projects. The practice Ada project (EMS) had only rudimentary
tools available (compiler, linker, editor). GRODY made use of
the DEC symbolic debugger (SD), and the Configuration Management
System (CMS). All subsequent Ada projects are using these tools
as well as the Language Sensitive Editor (LSE). Project person-
nel have also developed some additional tools in house to create
package bodies and templates for the associated subunits they

need to develop.

F. McGarry
NASA/GSFC
4 of 33

2.2 SOFTWARE CHARACTERISTICS (Chart 5)

Traditionally, software size has been described in terms of the
lines of code developed for the system. However, software size
can be expressed by many other measurements (Reference 8),

including

1. Total physical lines of code (carriage returns)

2. Noncomment/nonblank physical lines of code

3. Executable lines of code (ELOC) (not including type

declarations)

4., Statements (semicolons in Ada, which include type

declarations)

Chart 5 describes the size of the Ada projects in the flight
dynamics area using these four measurements. The FORTRAN
project, GROSS, was also included in the summary for comparison.
The GROSS project is the FORTRAN implementation of the GRODY
project, and the GRODY/GROSS comparison has been detailed in
previous papers. Because the GOESIM and UARSTELS projects are
both telemetry simulators, they are also very similar in terms of
their functionality. These two Ada projects are estimated to be
between 75 and 78 thousand lines of code (KSLOC). In comparison,
a typical telemetry simulator in FORTRAN consists of
approximately 28 KSLOC.

Unless one counts only Ada statements, these figures tell us that
the use of Ada results in many more lines of code than the use of

FORTRAN. The increase in lines of code is not necessarily a

F. McGarry
NASA/GSFC
5 of 33

negative result. Rather, it is simply that the size of the
system implemented in Ada will be larger than an equivalent
system in FORTRAN. It is also clear that a precise definition is
needed of what is a line of code in Ada and what code is included
in that measurement.

Throughout the years of developing similar systems in FORTRAN in
the flight dynamics area, the average level of software reuse has
been between 15 and 20 percent (Reference 9). FORTRAN projects
that attained a 35 percent or higher level of reuse of previously
developed code are rare. After the first Ada project and with
only 5 to 6 years of maturing in the environment, Ada projects
have now achieved a software reuse rate of over 30 percent. This
is already greater than the typical FORTRAN project. The
UARSTELS project is expected to consist of more than 40 percent
reused code. This trend of increasing software reuse is very
promising.

2.3 LIFE-CYCLE EFFORT DISTRIBUTION (Chart 6)

The GROSS project followed the typical FORTRAN life-cycle effort
distribution (Reference 10). Specifically, a small amount (8
percent) of the total effort expended on the project was spent
during the pre-design or requirements analysis phase of the
project; 27 percent of the effort was spent during the design
phase, 40 percent during the code implementation phase; and 25
percent during the system testing phase. For the Ada projects,
significant changes to the life cycle have not yet been observed.
However, the Ada life cycle is changing slightly with each
project and may soon show a different 1life cycle than that
expected for a FORTRAN project. The life cycles for the second
and third Ada projects are shifting slightly to show more design

F. McGarry
NASA/GSFC
6 of 33

time required with less system test time.

As the Ada environment matures and the SEL learns more about Ada,
the 1life cycle is expected to continue shifting in the direction
that the early literature has reported (Reference 11): more time
spent in the design phase and less time in the system test phase.
FORTRAN projects could assume the reuse of the life cycle based
on past experience. This life cycle cannot be automatically
reused in Ada, and more study is needed to determine the duration
and products of each phase of an Ada project.

With the current projects, the SEL has not observed significant
changes to the life-cycle phases. However, effort by phase is
time driven. The SEL also collects effort data by activity
across all phases. With this data the amount of effort spent on
such activities as design, coding, and testing is very different
than the distribution of effort on activities for FORTRAN
projects. Much more time is spent on design for the Ada

projects, but more analysis is still needed in this area.
2.4 ADA COST/PRODUCTIVITY (Chart 7)

Discussions on Ada productivity are somewhat confusing because so
many interpretations exist of software size measures in Ada.
Depending on the measurement used and an individual's
inclination, one could determine that Ada is either as good or
not as good as FORTRAN. Using the total lines of delivered code
as a measure, the first, second, and third Ada projects show an
improving productivity over time, and they show a productivity

greater than FORTRAN. However, considering only code statements

(excluding all comments and continued lines of code), the results

are different. An increasing productivity trend remains in the

F. McGarry
NASA/GSFC
7 of 33

Ada projects over time, but the Ada projects have not yet
achieved the productivity level of FORTRAN projects.

Within the flight dynamics environment, many software components
are reused on FORTRAN projects. Since no Ada components existed
previously, the first Ada projects were, in fact, developing a
greater percentage of their delivered code than the typical
FORTRAN project. Based on a past study by the SEL and on
experience with FORTRAN projects, personnel concluded that reused
code costs around 20 percent of the cost of new code (ref 15).
The cost of reused code lies in the effort needed to test,
integrate, and document the reused code in the new system. Using
this estimate, reusability can be factored into software size by
estimating the amount of developed code. Because of the
differences in cost of new and reused code, developed code is
calculated as the amount of new code plus 20 percent of the
reused code. With software reusability factored in, the
productivity for developed statements on Ada projects is
approximately the same as that for FORTRAN projects.

The trends in Ada productivity are very positive. Again, lines of
code must be clearly defined when discussing productivity. Using
total number of lines as the measurement of software size, Ada
productivity was always greater than FORTRAN productivity.
However, due to the greater number of lines of an Ada project
compared to a similar FORTRAN project, this measure can be
misleading.

2.5 USE OF ADA FEATURES (Chart 8)

F. McGarry
NASA/GSFC
8 of 33

It is difficult to tell whether a given project really used the
Ada language to its fullest capacity. Different applications may
or may not need all the features available in Ada. However, in
an effort to achieve some measurement in the use of the features
available in the Ada language, the SEL identified six Ada
features to monitor: generic packages, type declarations,
packages, tasks, compilable PDL, and exception handling. The SEL
then examined the code to see how little or how much these

features were used.

The numbers of packages and type declarations were normalized to
the size of the system, and the number of generic packages was
divided by the total number of packages in the system. As seen
in chart 8, the use of four of these features has evolved over
time: generic packages, type declarations, packages, and
tasking. Compilable PDL and exception handling did not show any

trends. Perhaps it is too early to see results in these areas.

The average size of packages (in SLOC) for the first Ada projects
is much higher than the average size of packages for the second
and third Ada projects. This is due to a difference in the
structuring method between the first Ada projects and all
subsequent Ada projects (Reference 4). The first Ada projects
were designed with one package at the root of each subsysten,
which led to a heavily nested structure. In addition, nesting of
package specifications with package bodies was used to control
package visibility. Current Ada projects are utilizing the view
of subsystems described by Grady Booch (Reference 12) as an
abstract design entity whose interface is defined by a number of
separately compilable packages, and nesting of Ada packages is

limited to generic package instantiations.

F. McGarry
NASA/GSFC
9 of 33

The use of generic packages from the first to the current Ada
projects seems to be increasing. More tham a third of the
packages on current projects are generic packages. This higher
use of generics reflects both a stronger emphasis on the
development of verbatim reusable components and increased
understanding of how to effectively utilize generic Ada packages
within the flight dynamics area.

The use of strong typing within these software systems is also
increasing, as measured by the number of type declarations per
KSLOC. With experience, developers are more comfortable with the
strong typing features of Ada and are using its capabilities to a
fuller extent.

The use of tasking shows the most dramatic evolution over time for
any particular Ada feature in the flight dynamics environment:
its use has decreased markedly. The first Ada project, GRODY,
contained eight tasks. However, from lessons learned on the
GRODY project, personnel on subsequent Ada dynamics simulator
projects have reduced that number to four tasks. Current
telemetry simulator projects require no tasks at all. In the
area of tasking, experience has shown that extensive use of this
Ada feature is not appropriate for many applications. Although
more extensive use of tasking might be very appropriate for other
applications, the use of this Ada feature has definitely changed
as project personnel have learned to use tasking only in those
situations that are appropriate.

2.6 RELIABILITY, ERROR/CHANGE RATE AND CHARACTERISTICS (Charts 9
and 10)

F. McGarry
NASA/GSFC
10 of 33

The SEL measures software reliability by the number of changes or
error corrections made to the software. For Ada projects,
software error and change rates show a very positive trend. While
it is too early to observe a definite difference from the FORTRAN
rates, the reliability of the Ada projects is at least as good as
that of FORTRAN projects. The error and change rates on the Ada
projects are also declining over time, a promising trend. The
types of errors also show an evolution from first through third

Ada projects.

On a typical FORTRAN project, design errors amount to only 3
percent of the total errors on the project. For the first and
second Ada projects, 25 to 35 percent of all errors were
classified as design errors, a substantial increase. However,
for the third Ada project, design errors are dropping signifi-
cantly and are estimated to be approximately 7 percent. This
rate is close to what is experienced on FORTRAN projects and

clearly shows a maturation process with growing expertise in Ada.

Much of the literature on Ada reports that the use of Ada should
help reduce the number of interface errors in the software
(Reference 13). In our FORTRAN environment, about one-third of
all errors on a project are interface errors. On our first and
second Ada projects, the number of interface errors was not
greatly reduced. Around one-fourth of the errors were interface
errors. However, with current projects, the SEL is now seeing

the expected results: interface errors are decreasing.

"Errors due to a previous change" is a category of errors that
was caused by a previous modification to the software. The first
Ada project showed a large jump in the number of these errors

compared to those using FORTRAN. However, all subsequent Ada

E. McGarry
NASA/GSFC
11 of 33

projects show a rate for "errors due to a previous change" very
similar to the FORTRAN rate. Many things probably contributed to
this initial jump in the error rate: inexperience with Ada,
inexperience with Ada design methodologies, and a nested software
architecture that made the software much more complex. Again,
the error profile is decreasing with the maturity of the Ada
environment.

3.0 OVERALL OBSERVATIONS ON THE IMPACT OF ADA (Chart 11)

In summary, many aspects of software development with Ada have
evolved as our Ada development environment has matured and our
personnel have become more experienced in the use of Ada. The
SEL has seen differences in the areas of cost, reliability,

reuse, size, and use of Ada features.

A first Ada project can be expected to cost about 30 percent more
than an equivalent FORTRAN project (Reference 14). However, the
SEL has observed significant improvements over time as a develop-

ment environment progresses to second and third uses of Ada.

The reliability of Ada projects is initially similar to what is
expected in a mature FORTRAN environment. However, with time,
one can expect to gain improvements as experience with the
language increases.

Reuse is one of the most promising aspects of Ada. The proportion
of reusable Ada software on our Ada projects exceeds the propor-
tion of reusable FORTRAN software on our FORTRAN projects. This
result was noted fairly early in our Ada projects, and our exper-
ience shows an increasing trend over time.

F. McGarry
NASA/GSFC
12 of 33

o 54N

A 3

il ETNT Al
PRk

The size of an Ada system will be larger than a similar system in
FORTRAN when considering SLOC. Size measurements can be
misleading because different measurements reveal different
results. Ratios of Ada to FORTRAN range from 3 to 1 for total
physical lines to 1 to 1 for statements.

The use of Ada features definitely evolves with experience. As
more experience is gained, some Ada features may be found to be
inappropriate for specific applications. However, the lessons
learned on an earlier project play an invaluable part in the
success of later projects.

R TIE . & B CF gL
L GTIRTCASIN oY PR3 S R |

OF PGOR QUALITY

F. McGarry
NASA/GSFC
13 of 33

1. Software Engineering Laboratory (SEL), SEL-85-002, Ada
Training Evaluation and Recommendations, R. Murphy and
M. Stark, October 1985

2. F. McGarry and R. Nelson, "An Experiment with Ada--The GRO
Dynamics Simulator," NASA/GSFC, April 1985

3. SEL, SEL-81-104, The Software Engineering Laboratory,
D. Card, F. McGarry, G. Page, et al., February 1982

4. =--, SEL-88-003, Evolution of Ada Technology in the Flight
Dynamics Area: Design Phase Analysis, K. Quimby and
L. Esker, 1988

5. =--, SEL-88-001, System Testing of a Production Ada Project:
The GRODY Study, J. Seigle, L. Esker, and Y. Shi, November
1988

6. C. Brophy, S. Godfrey, et al., "Lessons Learned in the
Implementation Phase of a Large Ada Project," Proceedings of
the Sixth National Conference on Ada Technology, 1988.

7. SEL, SEL-87-004, Assessing the Ada Desiqn Process and Its
Implications: A Case Study, S. Godfrey and C. Brophy,
July 1987

8. D. Firesmith, "Mixing Applies and Oranges: Or What Is an
Ada Line of Code Anyway?," Ada Letters, September/October
1988

L
F. McGarry
NASA/GSFC

REFERENCES

14 of 33

10.

11.

12.

13.

14.

15.

Computer Sciences Corporation (CSC), IM-88/083 (59 253),
Software Reuse Profile Study of Recent FORTRAN Projects in

the Flight Dynamics Area, L. Esker, January 1989

~SEL, SEL-81-205, Recommended Approach to Software

Development, F. McGarry, G. Page, et al., April 1983

V. castor and D. Preston, "Programmers Produce More With

Ada," Defence Electronics, June 1987

G. Booch, Software Engineering With Ada. Menlo Park, CA:

Benjamin/Cummings Publishing Company, 1983

The MITRE Corporation, Use of Ada for FAA's Advanced
Automation System (AAS), V. Basili et al., April 1987

B. Boehm, "Improving Software Productivity," Computer,
September 1987

SEL, SEL-84-001, Manager's Handbook For Software
Development, W. Agresti, F. McGarry, et al., April 1984

F. McGarry
NASA/GSFC
15 of 33

THE VIEWGRAPH MATERIALS
FOR THE

F. MCGARRY PRESENTATION FOLLOW

E’)“:v.a.. ’; ir'.:,'tj TN mEtg oy tewm gy g j
i e lanst HOT FILMED M__Lé_mrmnoum[BLANE

NOILYHOdHOO
S3ON3IOS H31NdNOD O4SD/VSVN
AGININD NIATIM
d3aXS3 VANIT AHHVOON MNVd4

LNIINNOHIANT FHVMLH0S
NOILONAOHd V NO
epy 40 S1OVdINI DNIATOAS

L00'Zleq

C

o
Eox
3

F. McG
NASA/G
19 of 33

ST RN AR SN AN RIS
40 i kb NG Fikiied)

Failomad«

RAGE 1Y INTENTIONALLY BLANK

T 3xeyd

coo’lled

¢S1143IN39 A3SINOHd dv3d OL1 IMVL LI S04 ONO1T MOH e

¢(% Y31139)"3NIL H3IAO ATLNIHIJIA, BPY 3SN IM OQ @

¢INIL aYE INIL ANS
‘GNIL 1S1 - epY 40 LOVdINI DNIONVYHO JHL SI LVHM e

¢ " ALNIGVNIVANIVIN/ALNIGVITEYH/ALIAILONAOYHd NI S103443 34V IVHM e

¢(NOILNGIHLSIA 1HO443 '©3)
S3171404d ININJOTIAIA NO BPY 40 LOVdII IHL S! LYHM e

a3s$sS34aayv 39 Ol S1INIOd

a3AO1AI SVH
ONILSTL/NOILVININITdNI/NDISIA/ONINIVHL OL HOVOUHddY e

13S 3HL A8 - S103ro4dd
T1V HO4 d31aNLs/a3Loa 110D N3349 SVH vivad d31ivi3q e

J4S9/VSVN 1V NOISIAIQ SOINVNAQ
1HOIM4 NI S103r0dd 8 NO d3ZIiiLn N339 SVH epy e

F. McGarry
NASA/GSFC

20 of 33

ANNOHOMOVH

¢ LIYHO

130 S WARAS
=2
06/1 68/} 88/1 /l8/1 98/} G/l w m -
‘ 594
001SH 9 L Z e
SW3
(
epy JWIL 1S! Moodv_ gt) Eom“%OzM_wEon. ._m._._<m<m“
O0715M 8¢t
AQOYD
Q0718 Ll
vavoo
epY JNIL dNC .
0071SH 84
NIS30D
0071SH 65
Svad
e
PY JNIL dHE ol
S7131SHvN

Q011K SL

S1313AN3

0071SM SEt

sSa3an3

NOISIAIA SOINVYNAQ 1HOIT4 NI SLO3rodd epv

¢ IYVHO

0102120
0098 XVA HO 084/11 XVA O30 NO A3d013A3Q S103rodd 11V
a3sN3d/SHNVIZ/SINIWNOD SIANTONI (SNHNLIY IOVIHHYD) SINN IVLIOL = D07Sx

(AHL3IW313L)

e 300 OW St 88/2 000S. HOLVINWIS S131SHVN
(TOYLINOD 3DHNOS)

v 1S3LINILSAS OWEL 88/1 00.8S JAILND3IX3 Svad
(AHLIWI13L)

v 1S31L W3ISAS ON 8L /8/6 0008. HOLVINNIS WIS309
(W3LSAS TOHLINOD LHOITL)

. 1S3LNILISAS ‘OW 02 /8/,. 000LPlL HOLVINWIS vavon
(W3LSAS TOHLNOD LHOINH)

L J131dNOD 'O 9¢ G8/8 00082L HOLYINWIS AQOHD
(ONINIVHL/3DILOVHd)

. 3131dWOD ‘ON t G8/€ 0€.S VYN OINOYHLOT13 SW3

T3ATT SN1Y1S NOILYHNG 31va (Do1s) IdAL 193royd

44viS (88/0€/L1) 1HYIS «3ZIS

d3ldNis S103drodd epv

F. McGarry
NASA/GSFC
22 of 33

¥ LYVYHO

‘030 d3SN INIWHOT3AIA TV «x
W31904Hd 30110VHd PV TIVIWS d3d013A30 AvH Wv3l«

w
3
~
-
N
o

F. McGarry
NASA/GSFC

23 of 33

A AA A e/1 G'S e/€ S131SHVN
A A A N ¥/2 % $/0 Svya4d
A A A A i LS v/L WIS30D
A AA A L/e 6'S L2 vavoo
A A N N x0 LY L/l AQOYD
N N N N 0 LY VN SN3

SWD dsS 331 7ad (OlLvy) (SHV3IA) (OlLvy) 123ro4d

31V IdNOD JON3IHIAX3 3ON3IIHIdX3 3DN3IIYIAIX3
++INIJNNOHIANT epy MW/S IOVHIAY NOLLYONddY

a3SN LNIJAINOHIANT ANV FON3Id3AdX3 NVIL

S LIVYHD

900°LL2a

vOILIHO NOLLINIA3A 3a02 40 3NI, '€
JAILISOd AH3IA AN3HL 3SN3YH ¢
(001S) W3LSAS HIOYYT NI SLINS3Y BpY 'L

%G1 %2eP VN %2E %8¢ 0 %9€
00021 - 000LL 00O0¥L 00052 00S22 00€22
0052} - 00LZL 000L2 0002t 0520v 00S22
000S1 - 00ELE 0009E 00S89 00009 00092
00082 000SZ 0085 00087 0006€L 000821 00SSY

NVH1HO4 (epy INWIL QYE) (epv INIL AN2) (epv INIL 1S1) (NVH1HOS)

NOLLYINWIS gy3i94VA Svad WiIS309 vavod AQOodn SSOUD

WL TVOIdAL

SOILSIHIALIOVHVYHO IHVMLHI0S

d3SN3Yd %

(093a 3dAL S3ANIONI
NOT02-IN3S)
SIN3WILVLS

(193Q 3dAL ON)
S3INM 31gVLND3IX3

ANV19 NON
/INIFWINOD NON

(4D) SaNM 1oL

F. McGarry
NASA/GSFC

24 of 33

9 IYVHD

00°LL2
NOILITdWOD OL SILVWILST NO aISVE ATIVILHYd v 0 2%C

(LS31 aN3 ‘30D AN3 ‘N9IS3A AN3 '©'3) S31vd ISVHd NO @3Svea NOILNGIY1SIA 140443«

e ng
- d3AH3SH0 N339 13A 1ON 3AVH
JT0A0 3411 OL SFDNVHO LNVOIIJINDIS

F. McGarry
NASA/GSFC
25 of 33

(SHNOH)
- +x06€. xx09E0L £x0€21L2C 09812 0sielt 140443 v10L
- 02 12 02 92 G2 1S3L
- 8c R rAZ r A op 30090
- e 14> rAS ¥2 12 NDIS3A
- 8 b 9 g 8 NDIS3A 34d

(epy JNIL QYE) (epv IWIL ANZ2) (epv INIL 1SH) (Nv41404)
S131SHYN Svad WISI0D vavoo AQOYD SSOHY

«1HO443 101 %
NOILNAIH1SId 1HO0443 FTOAD 3411 NO SLOVdINI EPY

| L LIVHD

(SYQ4/NIS30D/YAVYOD/AQOHD/SSOHD) sto'Liza

NOILO3HIQ 3AILISOd NI 34V SAN3YL epy e
EPY/NVHLHOS4 DONIHVJWNOD NI O01S 3SN LON OQ
«30A0D 4O S3NI, INIJIA ATHVITO @

BPY PIE BpY PuZ epy1Si NvHlHOA4 BPY PIg BpY pug Eepy isi z<mEo“_
(SINIW3ALVYLS Q3d013A3Q) (SINaW31VLS)
BPY PIE BPY PUZ BpY IS NvH1HO4 BpY pIE BpY pug eBpy ISI NVH1HO4
oL Gl
89
AVd
02 oe 44v1S
0g ~{ S Y3d
ob ! 09 SaNM
0S

(@10 %02 + M3N) SaNIN A3dOT13A3A (SN 1oL

ALIAILONAOHC/LSOD epy

F. McGarry
NASA/GSFC

26 of 33

8 IY¥YHD

8L0°212G

NOILVYOITddV HO4 31VIHdOHddVY 34N1iv33 TV LON e
3ON3IH3dX3 HLIM
A13LVIO3HddVY SIONVYHO S3HNLV3L epv JO JSN e

F. McGarry
NASA/GSFC

27 of 33

EpyY pig Epy pug epy 1St epy pig Epy pug epy isi
— ¢ 0z'l n“_— —~ S0
— ¥ sisvL - 0l Q01SA
WLO0L SIOVHOVd
— 9 -~ G'L
8 0¢
ONISYL SIOWMIOVJ
epy pig epy pug epy isi epy pig Epy pug BpY IS|
1
. b2 oL
20153 — 02)9Vd WOl
€ S3dAL VIOL MOVd OIH3INIO
S or
ONIdAL DNOHIS SOIH3INID

S34NLv3d epy 40 3SN

6 LIVID

oLo’Lted

(@3SN3Y/SLNIWNOD SIANTONI) SINIM TVLOL = DO1Sk

JNIL H3AO0 - BpY HOd4 SANTHL JAILISOd AHIN @

Nvd1lHOd Sv dO0D sV
1SV3T 1V - 3HVMLHOS BpY 40 ALIGvin3y e

o't Al L'l 81 v'e O0TISHM/SHOHY3
89 v'e 82 A 8 +*D0ISM/STONVYHD
Sva4d WIS30D Yavoo AQOHD (NVH1HO4)
SSOHD

31Vd 3ONVHO/HOHH3 ANV epy

F. McGarry
NASA/GSFC

28 of 33

OT LAIVHD

SHOYY3 JOV4HILNI LND Sd13H EPY e
3SN 40 ALIHNLYIW HLIM SIONVHD J1140dd HOHH3 EPY e

BV PIE EPY PUZ PV ISL NVHIHOA
BN A

JONVHO SNOIA3Hd Ol 3Nag HOHY3
BpY PIE BpY PU¢ EBPY ISL NVH1HOS

L]

Xld OL ASV3 AHAAN/ASV3

ct
St

08
%
06

(0018

EPY PIE BPVY pug BpV IS NvH1YOd

662
9
5 %

SHOYYH3 JOV4HILNI

EPY PIE BpY PUg EBpy IS NvH1HO4

]

g
92]
se .

SHOHH3 NOIS3A

SJI1SId310VdVYHO 0444

0]
02 %
o€

014

ot
02 %
oc

ov

VARV PARAY

F. McGarry
NASA/GSFC
29 of 33

TT LIVYHO

SW31804dd DId4103dS Ol 31VIHdOdddVNI S3HNLY3d JNOS e
ININJOT13A3A A3AOHdWI Ol 31Vv13H SINI3S e
«JON3IIHIdX3. HLIM NOILNTOAT LINVNINOYHJ e

LOL} SININILVIS @ } OL S/ 2 SINININOD NON e
I OL ¢ SANIT INGVLINOIXI @ I OLE SANM IVIOL @
(4394V1 - NvH1HO4 OL Bpy)

A1HV3 3ON3IHIdXT NVHLIHOS SA330X3 - SANIHL JAILISOd AHIA e

3ON3IH3dX3 HLIM SINIWIAOHLWI o
NVYHLHO4 O1 HVIIWIS ATIVILINI @

3SN INIL GHE/INIL ANZ NO SLINIWIAOHCINI LNVOISINDIS e
S103rM0dd JNILL 1SHid. OL AV3IHY3IAO +%0€E e

(73S IHL NI SLO3rOKHd 9 WOYH4)
SNOILYAHISO

3dNlv3d epy 40 3sn

3ZIS

3SN3y -

ALTIGVYI3Y -

1S0D

€PV 40 S1OVdINI DNIATOAS

S

.-

F. McGarry
NASA/GSFC

30 of 33

ZT JYVHO

SHIHLO NVHL NOILYOIlddY LN3H34410 HONW«

D
3
~
a4
G

(ONIMSVL "B8) AILOTIJ43 SISATYNY .G3NYVYIT SNOSSI1 @
NOILYOINddV O141093dS J04 31viHdOdddY S34NLv34d 11V LON @
JONIIHIAIX3./M A18VIDTHddY SIONVHO S3HNLY3d VAV 40 35N @

F. McGarry
NASA/GSFC
31 of 33

- ONIMANVH

Gy 0l L bz St Ly _Hmzo_ i nmovmu_ NOILd3DX3
0 1 0 e 8 0 ONIMSYL

) D071SM
0zl 00’} bl S6 se S0'l mmosasm_ SIOVMOV
25 Lyl 96'2 Mo 88’ 98'c _H 00T ONIdAL DNOHLS
a3yvio3Qg S3dAL V10l
%LE %6 %8'G2 %22 %LSL 0 ﬁ SIOWMOVd TVLOL H_ SOIHINTD
SIOMIOVE DIHIN3D
A N A A N N 1ad 318V IdWOD

S13LSHYN «SVYAa4 WISI0HD VvVAvOoH AJOHD «SW3

S3dNlv3ad vav 40 3sn

L}

g6l

86

L

€T LIVYHD

bo'Z1eg

IN3HVYddVY 3SN3H NDIS3A NYH1HOS e
SHOHY3 30V4H3ILNI LNO Sd13H epv e

«LNJWNOHIANI, 4O ALIHNLYIN

HLIM DNIONVHO S317404Hd HOHY3 epy e

4 14" ¢

ve 662 9'ce
96 £6 96
Ge 6°'Se 1>

(epy 3WIL QHE)

(epv 3NWIL aN2) (epv INIL 1SL) (NVHLHOS)
SSOHH

SJOILSIH3LOVHVHO HOHHI

JONVHO SNOIATHd
Ol 3NQJ SHOYY3 %

SHOHY3 3OV4H3LINI %

«Xld OL ASV3 AH3A
+ Xid OL ASV3, %

SHOHHI NDIS3A %

F. McGarry
NASA/GSFC

32 of 33

7T LAVHO

NOILO3HIA JAILISOd NI 34V SANIYL Py e
EPY/NVHLHOd ONIHV4NOD NI O01S 3SN LON OJ o
3000 40 3NN, INI43A ATHVITO @

06 £8 6'9 c8 €0l S1ALS INIWJOT3A3dA
611 80} V6 c'8 LYl SINJW3LVIS
6'tt 8'L¢e 8'Ge 0¢e b'LL INIWWNOD NON

(@10 %02+ M3N)
8Ly G'SP 0'LE 8'9p 9'22 S3NIT d34013A3A

9'€9 ¢'09 v'cs 8'9v 0'0¢ S3NIM V10l

Sva4 WISIOD VvAVOD AQOYD (NVH1IHOL)
SS0OHO

(AVQa-44V1S H3d S3NIT)
ALIANILONAOYd

ALIAILLONAOYHd/1LSOD EPY

[s 0]
o
Q
~
-—
[a\}
&)

F. McGarry
NASA/GSFC

33 of 33

4577
N91-106¢g

UMIACS-TR-88-92 December, 1988
CS-TR-2158

Towards A Comprehensive Framework for Reuse:{ .
A Reuse-Enabling Software Evolution Environment Y

V. R. Basili and H.D. Rombach // [9

Institute for Advanced Computer Studies |\4 l
Department of Computer Science
University of Maryland
College Park, MD 20742

ABSTRACT

Reuse of products, processes and knowledge will be the key to enable the
software industry to achieve the dramatic improvement in productivity and quality re-
quired to satisfy the anticipated growing demands. Although experience shows that
certain kinds of reuse can be successful, general success has been elusive. A software
life—cycle technology which allows broad and extensive reuse could provide the means
to achieving the desired order—of-magnitude improvements. This paper motivates and
outlines the scope of a comprehensive framework for understanding, planning, evaluat-
ing and motivating reuse practices and the necessary research activities. As a first step
towards such a framework, a reuse—enabling software evolution environment mode! is
introduced which provides a basis for the effective recording of experience, the gen-
eralization and tailoring of experience, the formalization of experience, and the (re-)use
of experience.

t Rescarch for this study. was supported in part by NASA grant nSG-5123, ONR grant N00O14-87-K-0307 and Airmics grant

DE-ACO05-OR21400 to the University of Maryland. 4 V. Basili
Univ. of MD
1 of 47

TABLE OF CONTENTS:

1 INTRODUCTION e
2 SCOPE OF A COMPREHENSIVE REUSE FRAMEWORK ...

3 A REUSE-ENABLING ENVIRONMENT MODEL ...
3.1 Implicit Learning and Reuse ...
3.2 Explicit Modeling of Learning and Reuse ...

3.2.1 Recording Experienceoooiiiiiiiiiee e

3.2.2 Generalizing & Tailoring Existing Experience Prior to its Potential
RS oottt oo e

3.2.3 Formalizing Existing Experience Prior to its Potential Reuse

3.2.4 (Re-) Using Existing Experience ...

4 TAME: AN INSTANTIATION OF THE REUSE-ENABLING ENVIRON-
MENT MODEL

5 CONCLUSIONS e

6 ACKNOWLEDGEMENTS ...

T REFERENCES |

V. Basili
Univ. of MD
2 of 47

10
11

12
15

16

1. INTRODUCTION

The existing gap between the demand and our ability to produce high quality software
cost—effectively calls for improved software life-cycle technology. A reuse-enabling software life-
cycle technology is expected to contribute significantly to higher quality and productivity. Qual-
ity can be expected to improve by reusing proven experience in the form of products, processes
and knowledge. Productivity can be expected to increase by using existing experience rather than

developing it from scratch whenever needed.

Reusing existing experience is the key to progress in any area. Without reuse everything

must be re-learned and re—created; progress in an economical fashion is unlikely. During the
*

evolution of software, we routinely reuse experience in the form of existing products (e.g. generic
Ada components, design documents, mathematical subroutines), processes (e.g., design inspections
methods, compiler tools), and domain-specific knowledge (e.g., cost models, lessons learned, meas-
urement data). Most reuse occurs implicitly in an ad-hoc fashion rather than as the result of
explicit planning and support. While reuse is less institutionalized in software engineering than in
other engineering disciplines, there exist some successful cases of reuse, i.e. product reuse. Reuse in
software engineering has been successful whenever the reused experience is self-describing, eg.,
mathematical subroutines, or the stability of the context in which the experience is reused com-
pensates for the lack of self-description, e.g., reuse of high-level designs across projects with stmi-
lar characteristics regarding the application domain, the design methods, and the personnel. In
software engineering, the potential productivity pay-off from reuse can be quite high since it is
inexpensive to store and reproduce software engineering experience compared to other engineer-
ing disciplines.

The goal of research in the area of reuse is the achievement of systematic methods for effec-
tively reusing existing experience to maximize quality and cost benefits. Successful reuse depends

on the characteristics of the candidate reuse objects, the characteristics of the reuse process

* THe term "evolution® is used in this paper to comprise the entire software life-cycle (development and maintenance).

V. Basili
Univ. of MD
3 of 47

itsell, and the technical and managerial environment in which reuse takes place. Interest in
reusability has re-emerged during the last couple of years [4, 9, 11, 12, 13, 14, 15, 16, 17, 19,
20, 21}, due in part to the stimulus provided by Ada and in part to our increased understanding

of the relation between software processes and products.

Our increased understanding tells us that in order to improve quality and productivity via
reuse we need a framework which allows (a) the reuse of all kinds of software engineering experi-
ence, i.e., products, processes and knowledge, {b) the better understanding of the reuse process
itself, and (c) the better understanding of the technical and managerial evolution environment in

which reuse is expected to be enabled.

This paper presents a reuse-enabling software evolution environment model, the first step
towards a comprehensive framework for understanding, planning, evaluating and motivating
reuse practices and the necessary research activities. Section 2 motivates the necessary scope of a
comprehensive reuse framework and the important role of a reuse-enabling software evolution
environment model within such a framework. Section 3 introduces the reuse-enabling software
evolution environment model and discusses its ability to explicitly model the recording of experi-
ence, the generalization and tailoring of experience, the formalization of experience, and the {re-)
use of experience. The TAME model, a specific instantiation of the reuse-enabling software evo-
lution environment model, is presented in Section 4. This specific instantiation is used to more
specifically describe the integration of the recording and (re-)use activities into an improvement

oriented software evolution process.

Before we proceed, we define some crucial terms that will be used in this paper so the reader
understands what we mean by them in the software context. We have tailored Webster’s general
definitions of these terms to the specific domain of software evolution. [mprovement means
enhancing a software process or product with respect to quality and productivity. Learning is the
activity of acquiring experience by instruction {e.g., construction) or study (e.g., analysis). R.e’usc

is the activity of repeatedly using existing experience, after reclaiming it, with or without

V. Basili
Univ. of MD
4 of 47

modification. Feedback means returning to the entry point of some process armed with the
experience created during prior executions of the process. We use the expression ezperience base
to mean a repository containing all kinds of experience. An experience base can be implemented
in a variety of ways depending on the type of experience stored. An experience base may consist
of one or more of the following: traditional databases containing factual pieces of information,
information bases containing structured information, and knowledge bases including mechanisms

for deducing new information [5, 24].

2. SCOPE OF A COMPREHENSIVE REUSE FRAMEWORK

Reuse in most environments is implicit and ad-hoc. When it is explicit or planned, it
predominantly deals with the reuse of code. In Section 1, we expressed our belief that effective
reuse technology needs to be based on (a) the reuse of products, processes and knowledge, (b) a
good understanding of the reuse process itself, and (c) a good understanding of the reuse-enabling

software evolution environment.

To better justify these beliefs, we will describe and discuss the reuse practice in the
Software Engineering Laboratory (SEL) at NASA Goddard Space Flight Center 2, 18], This is
an example where reuse has been quite successful at a variety of levels, albeit predominantly
implicit. Ground support software for satellites has been developed for a number of years in
FORTRAN. Reused experience exists in the people, methods, and tools as well as in the program

library and measurement database.

To explain reuse in this environment we must first explain the management structure.
There are two levels of management involved in the technical project management. The second
level managers (one from NASA and one from Computer Sciences Corporation, the contractor),
have been managing this class of projects for several years. Specific project managers are typi-

cally promoted from within the ranks, on either side, from the better developers on prior projects.

V. Basili
Univ. of MD
S of 47

This provides a continual learning experience for the management team. Technical review and
discussion is informal but commonplace. Lessons learned from experience are used to improve

management’s ability to monitor and control project developments.

The organizational structure has been relatively constant from project to project. There
have been minor variations due to improvements in such things as methods and tools which have
evolved from experience or been motivated the literature and verified by experimental data

analysis on prior projects.

The basic systems have been relatively constant. This permits reuse of the application
knowledge as well as the requirements, and design. For example the requirements documents are
quite mixed with regard to the level of specificity. In some places they are quite precise but in

other cases the are very incomplete, relying on the experience of the people from prior projects.

Requirements documents have phrases similar to the following: Capability X for new satel-
lite S2 1s similar to capability X for satellite S1 except for the following... This implicitly pro-
vides reuse of prior requirements documents as well as implicitly allows for reuse of prior design

documents and code.

Systems within a class, all have a similar design at the top level and the interfaces among
subsystems are relatively well defined and tend to be relatively error free. Design is implicitly

reused from system to system as specified by the experienced high level managers.

Reuse at the code level is more explicit. The software development process used is a reuse
oriented version of the waterfall model. The coding phase begins by seeding the code library with
the appropriately specified elements from the appropriate prior projects. These code components
are then examined for their ability to be reused. Some are used as is, others modified minimally,
others modified extensively, and yet others are eliminated and judged easier to develop from

scratch. This is a reuse approach that has evolved over time and has been quite effective.

A variety of tools have evolved that are quite application specific. These include everything

from tools that generate displays needed for testing to application specific system utilities.

V. Basili
Univ. of MD
6 of 47

Knowledge about these tools has been disseminated by guidance from more senior members of the

development team.

The SEL environment is a good example of strong reuse at a variety of levels, in a variety
of ways as part of the software development process. There has been a pattern of learning and
reusing knowledge, processes and products. The use of the measurement database has helped

with project control and schedule as well as quality assessment and productivity (2, 18].

NASA is now considering changing to Ada. Several Ada projects have already been com-
pleted. This has involved an obvious loss in the reuse heritage at the code level, as was antici-
pated. But it has also involved a less obvious and unexpected loss of reuse at the requirements

and design level, in the organizational structure, and even in the application knowledge area.

The initial impact of Ada was staggering because of the implicit, rather than explicit,

understanding of reuse in the environment. This understanding of reuse needs to be formalized.

Based upon the concept that reuse is more than just reuse of code and that it needs to be
explicitly modeled, we need to reconsider how we measure progress in reuse. The measurements
currently used in the SEL are based upon lines of code reused from one project to another. Given
this view, progress may not be related at all to the lines of code reused. We need to measure the
effects of reuse on the resources expended in the entire software life cycle and on the quality of
the products produced using an explicit reuse oriented evolution model. In fact, the process
should allow us measure for any set of reuse-related goals [3, 4, 8, 10]. Changing our models and
our metrics will help us to better understand the effects of the traditional reuse practices and

compare them with the effects of an explicit reuse oriented reuse mode!.

In summary, we believe that a comprehensive reuse framework needs to include (a) a reuse-
enabling software evolution environment model, (b) detailed models of reuse and learning, and (c)

characterization schemes for reuse and learning based upon these models.

V. Basili
Univ. of MD
7 of 47

3. A REUSE-ENABLING ENVIRONMENT MODEL

In the past, reuse has been discussed independent of the software evolution environment.
We believe reuse can only be an effective mechanism if it is viewed as an integral part,
paired with learning, of a reuse-enabling software evolution environment. None of the
traditional engineering disciplines has ever introduced the reuse of building blocks as indepen-
dent of the respective building process. For example, in civil engineering people have not
created "reuse libraries* containing building blocks of all shapes and structures, and then tried
to use them to build bridges, town houses, high-rises and cottages. Instead, they devised a
standard technology for building certain types of buildings (e.g., town houses) through a long pro-
cess of understanding and learning. This allowed them to define the needs for certain standard
building blocks at well-defined stages of their construction process. In the software arena we

have not followed this approach.

If we accept the premise that effective reuse requires a good understanding of the environ-
ment in which it 1s expected to take place, then we must model reuse in the context of a reuse-
enabling software evolution environment. Such a context will allow us to learn how to reuse
better. The ultimate expectation is that such improvement would lead to an ever increasing
usage of generator-technology during software evolution. The ability to automate the generation
of products from other products reflects the ultimate degree of understanding the underlying con-
struction processes. Automated processes are easy to reuse. For example, in building compiler
front-ends, we rarely reuse components of other compilers; instead, we reuse the compiler genera-
tors which automate the entire process of building compiler front-ends from formal language

specifications.

In Section 3.1 we discuss how learning and reuse implicitly occur in the context of tradi-
tional software evolution environments. In Section 3.2, we discuss how learning and reuse can be

explicitly modeled in the context of a reuse-enabling software evolution environment.

V. Basili
Univ. of MD
8 of 47

3.1. Implicit Learning and Reuse

During a workshop on "Requirements for Software Development Environments",
held at the University of Maryland in 1985, a view of a software evolution environment was
proposed that consisted of an information system and three information producers and consu-
mers: people, methods, and tools [22]. The information system is defined by a software evolu-

tion process model describing the information, the communication among people, methods

and tools, and the activity sequences for developing and maintaining software.

The traditional software evolution environment model in Figure 1 is a refinement of this

earlier model.

people methods tools
A A A
I § 1
v ¥ B

Software Evolution Process

— products

|

|

— management plans '
1

project data

con

PROJECT DATABASE

— schedules €-- - -
|
|
1
|
I
1
{
|
|

Figure 1: Traditional (non-reuse oriented) Software Evolution Environment Model

V. Basili
Univ. of MD
9 of 47

The purpose of the software evolution process is to produce output products, e.g., design
documents, code, from input products, eg., requirement documents. People execute this process
manually or by utilizing available methods and tools. These methods and tools can be under the
control of a project database. All or part of the information produced during this process Is
stored in a project database, e.g., products, plans such as management plans or schedules, pro-

ject data.

Typically, support for such a traditional software evolution environment mode! includes a
project database and means for the interaction of people with methods, tools, and the project
database during software evolution. The experience of people, as well as some of the methods
and tools, is usually not controlled by the project database. As a consequence, this experience is
not owned by the organization (via the project database) but rather owned by individual

human beings and lost entirely after the project has been completed.

Although the ideas of learning and reuse are not explicitly reflected in the traditional
software evolution environment model, they do exist implicitly. The experience of the people
involved in the software evolution process and the experience encoded in methods an.d tools is
reused. In many cases, previously developed products are reused as input products. In the same
way, products developed during one activity of the evolution process can be reused in subse-
quent activities of this same process. People learn (gain experience) from performing the activi-
ties of the evolution process. Another form of implicit learning occurs whenever products, plans,

or project data are stored in the project database.

The basic problem in this traditional environment model is not that learning and reuse
can not occur, but that learning and reuse are not explicitly supported and only because of indi-

vidual efforts or by accident.

V. Basili
Univ. of MD
10 of 47

3.2. Explicit Modeling of Learning and Reuse

Systematic improvement of software evolution practices requires a reuse-enabling environ-
ment model which explicitly models learning, reuse and feedback activities, and integrates them

into the software evolution process. Figure 2 depicts such a reuse-enabling environment model.

ution Process

EXPERIENCE BASE

Figure 2: Reuse-Enabling Software Evolution Environment Model

All the potentially reusable experience, including software evolution methods and tools, are
under the control of an experience base. Improvement is based on the feedback of existing experi-
ence (labeled with "FB*" for reuse in Figure 2). Feedback requires learning and reuse. Systematic

learning requires support for the recording of experience (labeled with "R* for recording in Figure

V. Basili
Univ. of MD
11 of 47

2), the off—]ine‘ generalizing or tailoring of experience (labeled with "G* and "T* for generaliz-
ing and tailoring in Figure 2), and the formalizing of experience (labeled with "F* for formalizing
in Figure 2). Off-line generalization is concerned with movement of experience from project-
specific to domain-specific and general; off-line tatloring is concerned with movement of experi-
ence from general to domain-specific and project-spectfic. Off-line formalization is concerned
with movement of experience from informal to schematized and productized. Systematic reuse
requires support for (re-)using existing experience (labeled with "U*" for use in Figure 2), and
*

on-line generalizing or tailoring of candidate experience (not explicitly reflected in Figure 2,

because it is assumed to be an integral part of the (re-)use activity}.

Although reuse and learning are possible in both the reuse-enabling and the traditional
environment models, there are significant differences in the way experience is viewed and how
learning and reuse are explicitly integrated and supported. The basic difference between the
reuse-enabling model and the traditional model is that learning and reuse become explicitly

modeled and are desired characteristics of software evolution.

3.2.1. Recording Experience

The objective of recording experience is to create a repository of well specified and organ-
ized experience. This requires a precise description of the experience to be recorded, the design
and implementation of a comprehensive experience base, and effective mechanisms for collecting,
validating, storing and retrieving experience. We replace the project database of the traditional
environment model by an the more comprehensive concept of an experience base which is
intended to capture the entire body of experience recorded during the planning and execution of
all software projects within an organization. All information Aows between the software evolu-
tion process and the experience base reflecting the recording of experience are labeled with "R* in

Figure 2.

* The attributes *on-line® and *off-line® indicale whether Lhe corresponding activilies are performed as part or indepen-
dent of any particular software evolution project.

V. Basili
Univ. of MD
12 of 47

Examples of recording experience include such activities as (a) storing of appropriately
documented, catalogued and categorized code components from prior systems in a product
library, (b) cataloguing of a set of lessons learned in applying a new technology in a knowledge
base, or (c) capturing of measurement data related to the cost of developing a system In a meas-

urement database.

In the SEL example of Section 2, code from prior systems is available to the program
library of the current project although no code object repository has been developed. Measure-
ment data characterizing a broad number of project aspects such as the project environment,
methods and tools used, defects encountered, and resources spent are explicitly stored in the SEL
measurement database [2, 8, 18]. Requirements and design documents as well as lessons learned
about the technical and managerial implications of various methods and tools are implicitly

stored in humans or on paper.

Today it is possible, but not common, to find product libraries. It is even less common to
record process-related experience such as process plans or data which characterize the impact of
certain methods and tools within an organization. There exist two main reasons why we need to
record more process-related experience: (a) it is generally hard to modify existing products
efficiently without any knowledge regarding the processes according to which they were created,
and (b) the effective reuse of process-related experience such as process plans or data could pro-

vide significantly more leverage for improvement than just the reuse of products.

3.2.2. Generalizing & Tailoring Existing Experience Prior to its Potential Reuse

The objective of generalizing existing experience prior to its reuse is to make a candidate
reuse object useful in a larger set of potential target applications. The objective of tailoring exist-
ing experience prior to its potential reuse is to fine-tune a candidate reuse object to fit a specific
task or exhibit special attributes, such as size or performance. These activities require a well-

documented cataloged and categorized set of reuse objects, mechanisms that support the

V. Basili
Univ. of MD
13 of 47

modification process, and an understanding of the potential target applications. Generalization
and tailoring are specifically concerned with movement across the boundaries of the "generality"
dimension: from general to domain-specific and project-specific and vice versa. Objectives and
characteristics are different f{rom »project to project, and even more so from environment to
environment. We cannot reuse past experience without modifying it to the needs of the current
project. The stability of the environment in which reuse takes place, as well as the origination of

the experience, determine the amount of tailoring required.

Examples of generalizing and tailoring experience include such activities as (a) developing a
generic package from a specific package, (b) instantiating a generic package for a specific type, (c)
generalizing lessons learned from a specific design technology for a specific application to any
design for that application or any application, (d) or parameterizing a cost model for a specific

environment.

In the SEL, requirements and design documents have implicitly evolved to be applicable to
all FORTRAN projects in the ground support software domain. Measurement data have been
explicitly generalized into domain-specific baselines regarding defects and resource expenditures
(2, 8, 18]. Requirements and designs are implicitly tailored towards the needs of a new project
based on the manager’s experience, and code is explicitly hand-modified to the needs of a new

project.

In general, recorded experience is project—specific. In order to reuse this experience in a
future project within the same application domain, we have to (a) generalize the recorded project
specific experience into domain specific or general experience and (b) then tailor it again. to the
specific characteristics of the new project. We distinguish between off-line and on-line generaliz-

ing and tailoring activities:

e Off-line generalizing and tailoring is concerned with increasing the reuse potential of exist-
ing process and product-related experience before knowing the precise reuse context (i.e., the

-project within which the experience is being reused). Off-line generalization and tailoring is

V. Basili
Univ. of MD
14 of 47

concerned with movement across the boundaries of the specificity dimension within the experi-
ence base: from general to domain-specific and then to project—specific, and visa versa. These
activities are labeled with *G* and "T* in Figure 2. An example of off-line generalization is
the construction of baselines. The idea is to use project-specific measurement data (e.g., fault
profiles across development phases) of several projects within some application domain and to
create the application-domain specific fault profile baseline. Each new project within the same
application domain might reuse this baseline in order to control its development process as far
as faults are concerned. An example of off-line tailoring is the adaptation of a general

scientific paradigm such as "divide and conquer" to the software engineering domain.

On-line tailoring and generalizing is concerned with tailoring candidate process and
product-related experience to the specific needs and characteristics of a project and the chosen
software evolution environment. These activities are not explicitly reflected in Figure 2 because
they are integral part of the (re-)use activity. An example of on-line tailoring is the adapta-
tion of a design inspection method to better detect the fault types anticipated in the current
project {6]. An example of on-line generalization is the inclusion of project specific effort data
from a past project into the domain specific effort baseline in order to better plan the required
resources for the current project. Obviously, this kind of generalization could have been per-

formed off-line too.

It is important to find a cost—effective balance between off-line and on-line tailoring and

generalization. It can be expected that generalization is predominantly performed off-line, tailor-

ing on-line.

A good developer is capable of informally tailoring general and domain specific experience

to the specific needs of his or her project. Performing these transformations on existing experi-

ence assumes the ability to generalize experience to a broader context than the one studied,

or to tailor experience to a specific project. The better this experience is packaged, the better

our understanding of the environment. Maintaining a body of experience acquired during a

V. Basili
Univ. of MD
15 of 47

number of projects is one of the prerequisites for learning and feedback across projects.

A misunderstanding of the importance of tailoring exists in many organizations. These
organizations have specific development guidebooks which are of limited value because they "are
written for some ideal project" which "has nothing in common with the current project and,
therefore, do not apply” [23]. All guidebooks (including standards such as DOD-STD-2167) are

general and need to be tailored to each project in order to be effective.

3.2.3. Formalizing Existing Experience Prior to its Potential Reuse

The objective of formalizing existing experience prior to its potential reuse is to increase the
reuse potential of a candidate reuse object by encoding it in more precise, better understood ways.
This requires models of the various reuse objects, notations for making the models more precise,
notations for abstracting reuse object characteristics, mechanisms for vahdating these models, and
mechanisms for interpreting models in the appropriate context. Formalization activities are con-
cerned with movement across the boundaries of the formality dimension within the experience
base: from informal to schematized and then to productized. These activities are labeled with

F in Figure 2.

Examples of formalizing experience include such activities as (a} writing functional
specifications for a code module, (b) turning a lessons learned document into a management sys-
tem that supports decision making, (¢) building a cost model empirically based upon the data
available, (d) developing evaluation criteria for evaluating the performance of a particular

method, or (e) automating methods into tools.

In the SEL, measurement data have been explicitly formalized into cost models (1] and error
models enabling the better planning and control of software projects with regard to cost estima-
tion and the effectiveness of fault detection and isolation methods [2, 6, 8, 18]. Lessons learned
have been integrated into expert systems aimed at supporting the management decision process
(5, 24].

V. Basili

Univ. of MD
16 of 47

The more we can formalize experience, the better it can be reused. Therefore, we try not
only to record experience, but over time to formalize experience from entirely informal (e.g., con-
cepts), to structured or schematized (e.g., methods), or even to completely formal (e.g., tools).
The potential for misunderstanding or misinterpretation decreases as experience is described more
formally. To the same degree the experience can be modified more easily, or in the case of

processes, it may be executed automatically (e.g., tools) rather than manually (e.g., methods).

3.2.4. (Re-) Using Existing Experience

The objective of reusing existing experience is to maximize the effective use of previously
recorded experience during the planning and execution of all projects within an organization.
This requires a precise characterization of the available candidate reuse objects, a precise charac-
terization of the reuse—enabling environment including the evolution process that is expected to
enable reuse, and mechanisms that support the reuse of experience. We must support the (re-)use
of existing experience during the specification of reuse needs in order to compare them with
descriptions of existing experience, the identification and understanding of candidate, the evalua-
tion of candidate reuse objects, the possible tailoring of the reuse object, the integration of the
reuse object into the ongoing software project, and the evaluating of the project’s success. All
information flows between the experience base and the software evolution process reflecting the

(re-)use of experience are labeled with "U" in Figure 2.

Examples of reusing experience include such activities as (a) using code components from
the repository, (b) developing a risk management plan based upon the lessons learned from apply-
ing a new technology, {c) estimating the cost of a project based on data collected from past pro-

jects, or (d) using a development method created for a prior project.

In the SEL, reuse needs are informally specified as part of the requirements document.
Matching candidate requirements and design documents are identified by managers who are

experienced in this environment. The evaluation of those candidate reuse objects is in part based

V. Basili
Univ. of MD
17 of 47

on human experience and in part on measurement data. They are tailored based on the
application-domain knowledge of the personnel. They are integrated into a very stable evolution
process based on human experience. All this reuse is implicit except for the reuse of code, which
although explicit, is informal. It could only be successful because it evolved within a very stable
environment. The recent change from FORTRAN to Ada has resulted in drastic changes of this

environment and as a consequence to the loss in the implicit reuse heritage.

Since the key for improvement of products is always improvement of the process creating
those products, we need to put equal emphasis on the reuse of product and process oriented
experience. Even today, we have examples of reuse of process experience such as process
plans (standards such as DOD-STD-2167, management plans, schedules) or process data (error,
effort or reliability data that define basclines regarding software evolution processes within a
specific organization). In most of these cases the actual use of this information within a specific
project context is not supported; it is up to the respective manager to find the needed informa-

tion, and to make sense out of it in the context of the current project.

4. TAME: AN INSTANTIATION OF THE REUSE-ENABLING ENVIRONMENT

MODEL

The objective of the reuse-enabling softwarc evolution environment model of Section 3.2 is
to explicitly model the learning and reuse-related activities of recording experience, generalizing
and tailoring experience, formalizing experience, and (re-Jusing experience so that they can be

understood, evaluated, predicted and motivated.

In order to instantiate a specific reuse—enabling environment, we need to choose a model of
the software evolution process itself In general, such an evolution process model needs to be capa-
ble of describing the integration of learning and reuse into the software evolution process. In par-
ticular, it needs to be capable of modeling when experience is created and recorded into the
V. Basili

Univ. of MD
18 of 47

experience base as well as when existing experience is used. It needs to provide analysis for the
purpose of on-line feedback, evaluating the application of all reuse experience, and off-line feed-

back for improving the experience base.

The reuse—enabling TAME environment model depicted in Figure 3 is an instantiation of
the reuse—enabling software environment model of Section 3.2. based on a very general improve-

ment oriented evolution process model.

L

EXPERIENCE BASE

Figure 3: Reuse—Enabling *TAME" Environment Model

Each software project performed according to this improvement oriented evolution process

model consists of a planning and an execution stage. The planning stage includes a characteriza-

V. Basili
Univ. of MD
19 of 47

tion of the current status of the project environment, the setting of project and improvement
goals, and the selection of construction and analysis methods and tools that promise to meet the
stated goals in the context of the characterized environment. The execution stage includes the
construction of output products and the analysis of these construction processes and resulting out-

put products.

The TAME environment model gives us a basis for discussing the integration of the record-
ing and (re-)use activities into the software evolution process. During the environment character-
ization stage of the improvement oriented process model we (re-)use knowledge about the needs
and characteristics of previous projects and record the needs and characteristics of the current
project into the experience base. During the goal setting stage we (re-)use existing plans for con-
struction and analysis from similar projects and record the new plans which have been tailored to
the needs of the current project into the experience base. During the method and tool selection
stage, we (re-)use as many of the constructive and analytic methods and tools which had been
used successfully in prior projects of similar type as feasible and record possibly tailored versions
of these methods and tools into the experience base. During construction we apply the selected
methods and tools, and record the constructed products into the experience base. During analysis
we use the selected methods and tools in order to collect and validate data and analyze them, and

record the data, analysis results and lessons learned into the experience base.

The TAME environment explicitly supports the capturing of all kinds of experience. The
consistent application of the improvement oriented process model across all projects within an
organization provides a mechanism for evaluating the recorded experience, helping us to decide
what and how to reuse, tailoring and analyzing. TAME supports continuous learning. The expli-
cit and comprehensive modeling of the reuse-enabling evolution environment including the experi-
ence base, the evolution process, and the various learning and reuse activities (see Figure 3) allows
us to measure and evaluate all relevant aspects of reuse. The measurement methodology used and
supported within the TAME environment has been published in earlier papers (7, 8].

V. Basili

Univ. of MD
20 of 47

6. CONCLUSIONS

In this paper we have motivated and outlined the scope of a comprehensive reuse frame-
work, introduced a reuse-enabling software environment model as a first step towards such a
comprehensive reuse framework, and presented a first instantiation of such an environment in the
context of the TAME (Tailoring A Measurement Environment) project at the University of Mary-

land |7, 8].

The reuse—enabling software evolution environment model presented in Section 3 provides a
basic environment for supporting the recording of experience, the off-line generalization and
tailoring of experience, the off-line formalization of experience, and the (re-) use of existing

experience.

Further steps required towards the outlined reuse framework are more specific models of
each of these activities that differentiate the components of these activities and serve as a basis
for characterization, discussion and analysis. We are currently taking the reuse-enabling software
environment model of section 3.2 down one level and developing a model for (re-jusing experi-
ence. Based on this reuse model we will develop a reuse taxonomy allowing for the characteriza-
tion of any instance of reuse. The reuse model will provide insight into the other activities of the
reuse—enabling environment model only in the way they interact with the (re-)use activity.
Corresponding models for each of the other activities need to be developed and integrated into

the reuse-enabling software environment mode}.

The reuse-enabling TAME environment model serves as a basis for better understanding,
evaluating and motivating reuse practices and necessary research activities. Performing projects
according to the TAME environment model requires powerful automated support for dealing with
the large amounts of experience and performing the complicated activities of recording, generaliz-
ing and tailoring, formalizing, and (re-)using experience. Indispensable components of such an
automated support system are a powerful experience base, and a measurement support system.

Many of the reuse approaches in the past have assumed that the developer has sufficient implicit

V. Basili
Univ. of MD
21 of 47

knowledge of the characteristics of the particular project environment, specific nceds for
reuse, the candidate reuse objects, etc. It is not trivial to have all this information available.
The institutionalized learning of an organization and the proper documentation of that
knowledge is definitely one of the keys to effective reuse. This leads to even better specification

methods and tools (one of the frequently mentioned keys to effective reuse).

As part of the TAME project at the University of Maryland we have been working on pro-
viding appropriate support for building such an experience base, and supporting learning and
(re-)use via measurement. We have completed several components towards a first prototype
TAME system. These components include the definition of project goals and their refinement into
quantifiable questions and metrics, the collection and validation of data, their analysis, and the
storage of all kinds of experience. One of the toughest research problems is to use measurement
not only for analysis, but also for feedback (learning and reuse} and planning purposes. We need
more understanding of how to support feedback and planning. The TAME system is intended to
serve as a vehicle for our research towards the effective support of explicit learning and reuse as

outlined in this paper.

8. ACKNOWLEDGEMENTS

We thank all our colleagues and graduate students who contributed to this paper by either

working on the TAME or any other reuse-related project or reviewing earlier versions of this

paper.

7. REFERENCES

[1] J. Bailey, V. R. Basili, A Meta-Model for Software Development Resource Expenditures,” in
Proc. Fifth International Conference on Software Engineering, San Diego, USA, March
1981, pp. 107-116.

V. Basili
Univ. of MD
22 of 47

2l

3]

(4]

8]

[12]
(13]
[14]

1)
16]
17

[18]

[19]

[20]

V. R. Basili, "Can We Measure Software Technology: Lessons Learned from Eight Years of
Trying," in Proc. Tenth Annual Software Engineering Workshop, NASA Goddard Space
Flight Center, Greenbelt, MD, December 1985.

V. R. Basili, "Quantitative Evaluation of Software Methodology,” Dept. of Computer
Science, University of Maryland, College Park, TR-1519, July 1985 [also in Proc. of
the First Pan Pacific Computer Conference, Australia, September 1986].

Victor R. Basili, "Software Maintenance = Reuse-Oriented Software Development,” In
Proc. Conference on Software Maintenance, Key-Note Address, Phoenix, AZ, October 1988.

V. R. Basili, C. Loggia Ramsey, "ARROWSMITH-P - A Prototype Expert System for
Software Engineering Management,” IEEE Proceedings of the Expert Systems in
Government Symposium, McLean, VA, October 1985, pp. 254-264.

V. R. Basili, H. D. Rombach, "Tailoring the Software Process to Project Goals and
Environments,” Proc. of the Ninth International Conference on Software Engineer-
ing, Monterey, CA, March 30 — April 2, 1987, pp. 345-357.

V. R. Basili, H. D. Rombach, "TAME: Integrating Measurement into Software Environ-
ments,* Technical Report TR-1764 (or TAME-TR-1-1987), Dept. of Computer Science,
University of Maryland, College Park, MD 20742, June 1987.

V. R. Basili, H. D. Rombach "The TAME Project: Towards Improvement-Oriented
Software Environments,” IEEE Transactions on Software Engineering, vol. SE-14, no. 6,
June 1988, pp. 758-773. [is also available as Technical Report (UMIACS-TR-88-8, CS-
TR-1983, or TAME-TR-2-1988), Department of Computer Science, University of Mary-
land, College Park, MD 20742].

V. R. Basili, H. D. Rombach, J. Bailey, and B. G. Joo, “Software Reuse: A Framework,"
Proc. of the Tenth Minnowbrook Workshop on Software Reuse, Blue Mountain Lake,
New York, July 1987.

V. R. Basili, R. W. Selby, D. H. Hutchens, "Experimentation in Software Engineering,"
IEEE Transactions on Software Engineering, vol.SE-12, no.7, July 1986, pp.733-743.
V. R. Basili and M. Shaw, "Scope of Software Reuse,” White paper, working group on
'Scope of Software Reuse’, Tenth Minnowbrook Workshop on Software Reuse, Blue
Mountain Lake, New York, July 1987 (in preparation).

Ted Biggerstaff, "Reusability Framework, Assessment, and Directions," IEEE Software
Magazine, March 1987, pp.41-49.

P. Freeman, "Reusable Software Engineering: Concepts and Research Directions,” Proc.
of the Workshop on Reusability, September 1983, pp. 63-76.

R. Prieto-Diaz, P. Freeman, "Classifying Software for Reusability," IEEE Software, vol 4,
no.l, January 1987, pp. 6-16.

[EEE Software, special issue on ’Reusing Software’, vol.4, no.1, January 1987.
IEEE Software, special issue on "Tools: Making Reuse a Reality’, vol.4, no.7, July 1987.

G. A. Jones, R. Prieto-Diaz, “Building and Managing Software Libraries," Proc. Comp-
sac’88, Chicago, October 5-7, 1988, pp. 228-236.

F. E. McGarry, *Recent SEL Studies," in Proc. Tenth Annual Software Engineering
Workshop, NASA Goddard Space Flight Center, Greenbelt, MD, Dec. 1985.

Mary Shaw, "Purposes and Varieties of Software Reuse,* Proceedings of the Tenth
Minnowbrook Workshop on Software Reuse, Blue Mountain Lake, New York, July,
1987.

T. A. Standish, "An Essay on Software Reuse," IEEE Transactions on Software
Engineering, vol. SE-10, no. 5, September 1984, pp.494-497.

V. Basili
Univ. of MD
23 of 47

THE VIEWGRAPH MATERIALS
FOR THE

V. BASILI PRESENTATION FOLLOW

copeI o L T e A ‘1"“ T4l RASY D
e P O S e) P RIS i HEY T '.‘E Mﬂ 'NIE“I'UM H‘IY BLA““

TOWARD A REUSE-ORIENTED SOFTWARE
EVOLUTION PROCESS

VICTOR R. BASILI
M. DIETER ROMBACH

INSTITUTE FOR ADVANCED COMPUTER STUDIES
AND

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF MARYLAND

LT T D

PAGE_2 [INTENTIONARLY BLANK

V. Basili
Univ. of MD
27 of 47

REUSE OF EXPERIENCE IS THE KEY TO PRODUCTIVITY AND
QUALITY

EXPERIENCE INCLUDES PRODUCTS, PROCESSES AND KNOWLEDGE

MOST REUSE IS AD HOC, IMPLICIT, AT CODE LEVEL

REUSE MUST BE BUILT INTO THE PROCESS

MODELS OF REUSE-ORIENTED EVOLUTION ENVIRONMENT AND
ACTIVITIES MUST BE DEVELOPED

V. Basili
Univ. of MD
28 of 47

IMPROVEMENT PARADIGM

CHARACTERIZE the current project environment

SET UP GOALS and REFINE THEM INTO
QUANTIFIABLE QUESTIONS AND METRICS for
successful project performance and improvement over
previous project performances

CHOOSE the appropriate construction model for this
project and supporting methods and tools

EXECUTE the processes and construct the products,
collect the prescribed data, validate it, and provide
feedback in real-time

ANALYZE the data to evaluate the current practices,
determine problems, record the findings and MAKE
RECOMMENDATIONS FOR IMPROVEMENT

Proceed to step 1 to START THE NEXT PROJECT,
ARMED WITH THE EXPERIENCE GAINED FROM
THIS AND PREVIOUS PROJECTS

The TAME Project

V. Basili
Univ. of MD
29 of 47

REUSE IN THE SEL

IMPLICIT/THROUGH PEOPLE
APPLICATION DOMAIN
SOLUTION STRUCTURE
MANAGEMENT/SUPPORT

EXPLICIT/THROUGH PROCESS
CODE REUSE

QUESTIONS:
WHAT HAPPENS TO REUSE AS WE MOVE FROM FORTRAN 70 ADA?
HOW DO WE MEASURE THE EFFECTS OF REUSE?

WHAT IS THE EFFECT OF REUSE ON ALL ASPECTS OF THE
LIFE CYCLE?

V. Basili
Univ. of MD
30 of 47

TYPICALLY SEE’S
PROVIDE THE PROJECT DATA BASE
SUPPORT THE INTERACTION OF PEOPLE WITH METHODS,
TOOLS AND THE PROJECT DATA BASE
EXPERIENCE IS NOT
CONTROLLED BY THE PROJECT DATA BASE
OWNED BY THE ORGANIZATION

REUSE EXISTS IMPLICITLY

V. Basili
Univ. of MD
31 of 47

NA

Software Evolution Process

— process & product specs
v

products
- methods & tools

- - - e e e e e e T e s e e

V. Basili

Univ. of MD

32 of 47

A REUSE-ORIENTED EVOLUTION ENVIRONMENT MODEL

WHAT ARE THE COMPONENTS OF A REUSE-ORIENTED EVOLUTION
MODEL?

HOW CAN THE REUSE PROCESS MODEL BE INCORPORATED INTO
THE CONTEXT OF DEVELOPMENT AND MAINTENANCE?

HOW CAN LEARNING AND FEEDBACK BE USED TO SUPPORT THE
REUSE MODEL?

V. Basili
Univ. of MD
33 of 47

EFIN

IMPROVEMENT
ENHANCING A SOFTWARE PROCESS OR PRODUCT WITH RESPECT

TO QUALITY OR PRODUCTIVITY

FEEDBACK
RETURNING TO THE ENTRY POINT OF SOME PROCESS ARMED

WITH THE EXPERIENCE GAINED FROM PREVIOUS PERFORMANCES
OF THIS PROCESS

LEARNING
THE ACTIVITY OF ACQUIRING KNOWLEDGE BY INSTRUCTION,

E.G., CONSTRUCTION, OR STUDY, E.G., ANALYSIS

REUSE
THE ACTIVITY OF REPEATEDLY USING EXISTING EXPERIENCE,

AFTER RECLAIMING 1T, WITH OR WITHOUT MODIFICATION

EXPERIENCE BASE
A REPOSITORY OF ALL KINDS OF EXPERIENCE

V. Basili
Univ. of MD
34 of 47

RELATIONSHIP OF THE TERMS

IMPROVEMENT OF A SOFTWARE PROCESS OR PRODUCT
REQUIRES THE FEEDBACK OF AVAILABLE EXPERIENCE INTO
SOME PROCESS

FEEDBACK

REQUIRES THE

ACCUMULATION OF EXPERIENCE (LEARNING)

INTO SOME AVAILABLE RESOURCE (EXPERIENCE BASE)

THE USE OF THIS EXPERIENCE FOR A PARTICULAR

PURPOSE (REUSE)

EXPERIENCE BASES CAN BE DATA BASES, INFORMATION BASES,
KNOWLEDGE BASES OR ANY COMBINATION OF THE THREE

V. Basili
Univ. of MD
35 of 47

4
i
{
L
-4
\
BN

- 'lnforﬁul

o - g .
4 R

‘schematised ‘producﬁl:ed-

PROJEQT SPECIFIC | =~ 4

DOMAIN SPECIFIC

R

- -

™

__.__4__- -

GENERAFR °

V. Basili
Univ. of MD
36 of 47

EXPERIENCE BASE

Y NG AN

SYSTEMATIC LEARNING REQUIRES SUPPORT FOR
RECORDING EXPERIENCE
OFF-LINE GEMERALIZING OR TAILORING OF EXPERIENCE
FORMALIZING OF EXPERIENCE
SYSTEMATIC REUSE REQUIRES SUPPORT FOR
USING EXISTING EXPERIENCE
ON-LINE GENERALIZING OR TAILORING OF CANDIDATE EXPERIENCE
BOTH LEARNING AND REUSE NEED TO BE INTEGRATED INTO AN
OVERALL SOFTWARE EVOLUTION MODEL

V. Basili
Univ. of MD
37 of 47

OBJECTIVE:
CREATE A REPOSITORY OF WELL-SPECIFIED AND CLASSIFIED
EXPERIENCE

REQUIREMENTS:
EFFECTIVE MECHANISMS FOR COLLECTING, VALIDATING, STORING
AND RETRIEVING EXPERIENCE

EXAMPLES:

STORING OF CODE COMPONENTS FROM PRIOR SYSTEMS IN A
REPOSITORY, APPROPRIATELY DOCUMENTED, CATALOGED AND
CATEGORIZED

CATALOGING OF A SET OF LESSONS LEARNED IN APPLYING A NEW
TECHNOLOGY

SAVING MEASUREMENT DATA IN A DATA BASE ON THE COST OF
DEVELOPING A SYSTEM

RECORDING A DEVELOPMENT METHOD FOR USE ON THE NEXT PROJECT

V. Basili
Univ. of MD
38 of 47

-)JUSING EX

OBJECTIVE:
MAXIMIZING THE EFFECTIVE USE OF PREVIOUSLY RECORDED

EXPERIENCE DURING THE PLANNING AND EXECUTION OF ALL
PROJECTS WITHIN AN ORGANIZATION

REQUIREMENTS:
SPECIFICATION OF THE REUSE ENVIRONMENT
CHARACTERIZED CANDIDATE REUSE OBJECTS
AVAILABLE EXPERIENCE
A PROCESS IN WHICH WE
SPECIFY REUSE NEEDS
FIND APPROPRIATE CANDIDATES
EVALUATE REUSE CANDIDATES
MODIFY THE REUSE CANDIDATE
INTEGRATE THE REUSE CANDIDATE INTO THE PROCESS
TEST THE INTEGRATED OBJECT WHICH INCLUDES THE REUSE OBJECT

EXAMPLES:
USING CODE COMPONENTS FROM THE REPOSITORY
DEVELOPING A RISK MANAGEMENT PLAN BASED UPON LESSONS LEARNED
IN APPLYING A NEW TECHNOLOGY
ESTIMATING THE COST OF A PROJECT USING DATA ON PAST PROJECTS
USING A DEVELOPMENT METHOD CREATED FOR A PRIOR PROJECT

V. Basili
Univ. of MD
39 of 47

GENERALIZING OR TAILORING OF EXISTING EXPERIENCE
PRIOR TO ITS REUSE

OBJECTIVE: GENERALIZING
MAKING A CANDIDATE REUSE OBJECT USEFUL IN A LARGER SET OF
POTENTIAL TARGET APPLICATIONS

OBJECTIVE: TAILORING
FINE-TUNING A CANDIDATE REUSE OBJECT TO FIT A SPECIFIC TASK
OR EXHIBIT SPECIAL ATTRIBUTES, SUCH AS SIZE OR PERFORMANCE

NOTE:

GENERALIZING AND TAILORING CAN BE ON-LINE OR OFF-LINE
ON-LINE: DONE FOR A SPECIFIC PROJECT
OFF-LINE: THE PRECISE REUSE CONTEXT NOT KNOWN A PRIORI

REQUIREMENTS:

A WELL-DOCUMENTED CATALOGED AND CATEGORIZED SET OF REUSE OBJECTS
MECHANISMS FOR EASY MODIFICATION

AN UNDERSTANDING OF THE POTENTIAL TARGET APPLICATIONS

EXAMPLES:
DEVELOPMENT OF A GENERIC PACKAGE FROM A SPECIFIC PACKAGE
INSTANTIATING A GENERIC PACKAGE FOR A SPECIFIC DATA TYPE
GENERALIZING THE LESSONS LEARNED FROM A SPECIFIC DESIGN TECHNOLOGY
FOR A SPECIFIC APPLICATION TO ANY DESIGN FOR THAT
APPLICATION OR ANY APPLICATION

V. Basili
Univ. of MD
40 of 47

PARAMETERIZING A COST MODEL FOR A SPECIFIC ENVIRONMENT
MODIFYING THE DESIGN INSPECTION PROCESS BASED UPON A HISTORY
OF THE DEFECTS MADE IN THE SPECIFIC ENVIRONMENT

V. Basili
Univ. of MD
41 of 47

RMAL IZATION X N

OBJECTIVE:
THE ENCODING OF EXPERIENCE IN MORE PRECISE, BETTER UNDERSTOOD WAYS

REQUIREMENTS:

MODELS OF VARIOUS REUSE OBJECTS

NOTATIONS FOR MAKING THE MODELS MORE PRECISE

NOTATIONS FOR ABSTRACTING REUSE OBJECT CHARACTERISTICS
MECHANISMS FOR VALIDATING THE MODELS

MECHANISMS FOR INTERPRETING MODELS IN CONTEXT

EXAMPLES:

WRITING THE FUNCTIONAL SPECIFICATION OF A CODE MODULE

TURNING A LESSONS LEARNED DOCUMENT INTO A MANAGEMENT SYSTEM
THAT SUPPORTS DECISION MAKING

BUILDING A COST MODEL EMPIRICALLY BASED UPON DATA AVAILABLE

DEVELOPING EVALUATION CRITERIA FOR EVALUATING THE PERFORMANCE
OF A PARTICULAR METHOD

AUTOMATING METHODS INTO TOOLS

V. Basili
Univ. of MD
42 of 47

INTEGRATION OF REUSE AND LEARNING INTO A

SOFTWARE EVOLUTION PROCESS MODEL

OBJECTIVE:
70 SUPPORT THE LEARNING AND REUSE PROCESSES IN A WELL-SPECIFIED,
ORGANIZED, NATURAL WAY SO THAT IT CAN BE UNDERSTOOD, EVALUATED,

PREDICTED AND MOTIVATED

REQUIREMENTS:
SUPPORT MECHANISMS FOR
RECORDING WHAT HAS BEEN LEARNED
(RE-)USING AND ON-LINE TAILORING OR GENERALIZING
OFF-LINE TAILORING
FORMALIZATION

EXAMPLES:

A REPOSITORY FOR ALL POSSIBLE CANDIDATE REUSE OBJECTS INCLUDING
METHODS, TOOLS, PRIOR PROJECT DOCUMENTS (CODE, REQUIREMENTS,
RISK MANAGEMENT PLANS)

A SET OF MODELS FOR VARIOUS PROCESSES AND PRODUCTS

A MEASUREMENT DATA BASE

A KNOWLEDGE BASE THAT SUPPORTS MANAGEMENT DECISION-MAKING
BASED UPON DATA, LESSONS LEARNED AND OTHER AVAILABLE
INFORMATION

V. Basili
Univ. of MD
43 of 47

4

o FL

" informal

BN , T

echemiised productioed

TSPECFIC |

T ———

V. Basili
Univ. of MD
44 of 47

b e ——

T —1

GE

NERAR T

EXPERIENCE BASE

ORIGIVAL FAGE 1S
OF POGR QUALITY

REUSE-ENABLING
SOFTWARE EVOLUTION PROCESS

object/context

B |
Feuse process
D |

®

object/context

EXPERIENCE BASE

V. Basili
Univ. of MD
45 of 47

¢: reuse context

c_2.2: evolution context

¢]2.1: system contex}

o_3: object

1
—1
1

p: reuse process

H
H
e T T T YT I T T T T T T v e rp . .
v v

B L T LT TR OIS EP AP RFRNP DU r e

o_1: object

¢]1.1: system contex}

c_1.2: evolution context

EXPERIENCE BASE

V. Basili
Univ. of MD
46 of 47

CONCLUSIONS

G6ENERAL
NEED INTEGRATED MODELS OF ALL THE ACTIVITIES:
E.G., BALANCE BETWEEN REUSE AND TAILORING

NEED TO USE MODELS AND PROJECT GOALS TO DEVELOP USEFUL
MEASURES

GOALS AND EFFECTS OF REUSE MUST BE EXPLICITLY STATED SO
WE CAN CHARATERIZE, EVALUATE, PREDICT AND MOTIVATE

REUSE

SEL
MOVING TO ADA (OR ANY NEW TECHNOLOGY) COSTS IN THE SHORT

RUN, BUT AN EXPLICIT REUSE CHARACTERIZATION CAN HELP

EFFECT IS MORE THAN LINES OF CODE REUSED

ARE MOVING TOWARD BUILDING AN EXPERIENCE BASE TO SUPPORT
TAILORING AND REUSE

V. Basili
Univ. of MD
47 of 47

The Software Management Environment (SME)

Jon D. Valett
(NASA/GSFC))
William Decker N 9 1 - 1 O 6 O 9
and .
John Buell
(Computer Sciences Corporation) ¢

1.0. Background (charts 1 and 2)

The Software Management Environment (SME) is a research
effort designed to utilize the past experiences and results of
the Software Engineering Laboratory (SEL) [Card82] and to
incorporate this knowledge into a tool for managing projects.

SME provides the software development manager with the ability to
observe, compare, predict, analyze, and control key software
development parameters such as effort, reliability, and resource
utilization. This paper describes the major components of the
SME, outlines the architecture of the system, and provides
examples of the functionality of the tool.

The SEL has been researching and evaluating software
development methodologies for over ten years. This research has
provided valuable insight into the software development process
of one particular organization. By collecting detailed software
development data and recording that data in a software
engineering data base [Church82][Heller87], the SEL has been able
to characterize and understand the development process within
that organization. Using this data to measure the impact of
various methodologies, tools, and perturbations to that process
has enabled the SEL to better control and manage the software
projects of this organization.

Recognlzlng the vast potential of providing the experience
of previous projects, the data, the research results, and the
knowledge of experienced software managers to the managers of
ongoing projects, research efforts were initiated to provide
these items in the form of a tool. Initial prototype efforts
began in 1984, with the development of a tool that explored the
possibilities of providing this information. That effort was
thoroughly analyzed and requlrements were developed for a more
complete software system late in 1986 ([Valett87]). During this
time work began on the current SME.

The major functionality that the SME provides for its user
can be divided into four high level concepts:

1.) The ability for a manager to compare the ongoing software
project to other projects. This function allows the manager to
view software metric data such as weekly effort or error data and
to compare it to other projects.

2.) The ability for the manager to receive predictions of
future events of interest. SME will predict the final values for
key project parameters such as effort or rellablllty.

3.) SME will also analyze project data to give insights into
the strengths and weaknesses of the development process.

4.) SME will analyze overall project quality. This will

J. Valett
NASA/GSFC
1 of 21

provide the manager with high-level insight into the project’s
overall development process.

Thus, the SME enables the manager to gain valuable insight into
the progress and quality of a software development project.

This paper describes the concepts and architecture of the
SME. Section 2.0 is devoted to describing the research results
and data which are incorporated into the SME. Section 3.0
describes the architecture of the system and gives examples of
the functions available to the manager. Finally, a brief
discussion is presented in section 4.0.

2.0 The Components of SME

Attempting to integrate past research results along with
dynamic project data, the SME provides the manager with a wide
variety of information for monitoring and controlling an ongoing
software project. The information required to provide this
functionality can be broken into three major components: 1) the
corporate history, 2) research results from studies of the
software development process, and 3) management rules for
software development.

2.1 The Corporate History (charts 3 and 4)

One underlying assumption of the SME is that a corporate
history of some type exists. In this case, the SEL data base
serves as the corporate memory for the SME. The SEL data base
has evolved into its current form over the nearly 12 years of its
existence. The data base itself provides the SME with the
majority of the raw data required to monitor a project.

The major items of data provided by the data base include
weekly software parameters that are of interest to the software
manager. These weekly items of data include such parameters as
effort, computer utilization, growth of source code, change
history, and error history. All of these items are available as
part of the SEL data base for any project of interest, as well as
on the past projects that a manager may want to use as a basis
for comparison.

Many of the other data needed by the SME is acquired from
the SEL data base. This data includes items which characterize
the types of projects as well as the language or tools used.
Subjective data which is used to evaluate projects on a series of
software methodology questions is also used by the system.

During the 12 years of the SEL’s existence, numerous studies
and reports characterizing and evaluating the software
development environment have been written. These studies and
reports have provided numerous research results for the
environment. Thus, the SEL data base establishes the foundation
for all of the components of the SME.

2.2 Research Results (chart 5)

A second major component of the SME is the research results
that have been developed via the SEL data base. Information

J. Valett
NASA/GSFC
2 of 21

derived from papers and studies developed through experimentation
and through analysis of the SEL data base is a key part of the
SME (for examples of results see [Valett88]). The SME attempts
to incorporate these research results via models and measures for
the software environment. Based on a comprehensive understanding
of the development environment, these models and measures are
used by the SME to enable the manager to better understand how a
particular project compares to the normal project within the
environment. They also are used by the SME in predicting and
estimating future conditions on the software project.

Models of software development parameters are essential for
the SME to perform its prediction and comparison functions. A
model profiles the expenditure, the utilization, or the
production of a software development parameter. As an example, a
model of the staffing profile would capture the typical
expenditure of effort over the entire software development life
cycle [Basili78]. This type of model can be used by a manager to
compare the current effort expenditure with the typical one for
this environment.

Other types of relationships are used by the SME to capture
known affects of specific software development methodologies.
For instance, the knowledge that code reading is the most
affective method for finding errors in this environment
[Selby87], is important information to disseminate to a manager.
One goal of the SME is to provide a knowledge base of known facts
and relationships about a particular environment.

2.3 Software Development Rules (chart 6)

A final major component of the SME is software development
rules. The SME attempts to integrate the experience of software
managers into an expert system concept to provide the ability to
analyze project measures and status. Previously, this experience
was only captured in lessons learned or summary documents. The
SME formalizes this knowledge into a basic structure that will
continually evolve as the experience and knowledge are validated.
By automating the knowledge utilization into an expert system,
SME gives the manager the ability to apply past experience to
current projects. The basic concept of utilizing expert systems
for software management was proven feasible by previous research
done by the SEL [Valett85][Ramsey86]. Admittedly, the extension
of these concepts for use within the SME is an extremely
difficult area of research, however, early results show they will
be very useful.

Within the SME experienced manager’s knowledge can be used
in numerous areas. The knowledge has been collected from
interviews with numerous managers, along with analysis of SEL
data and information obtainable from the various reports and
studies written by the SEL. An example of the type of knowledge
used by the SME is shown in chart 6. This rule:

If error rate is lower than normal then
1. Insufficient testing
2. Experienced team
3. Problem less difficult than expected
is a simplified form of the type of rule collected for use in the

J. Valett
NASA/GSFC
3 of 21

SME. Utilizing this rule, numerous other rules, and facts about
the measures and status of the software project, the SME can
reach conclusions pertaining to the deviations of project
measures, such as error rate. Thus, the system can give the
manager vital information regarding the strengths and weaknesses
of a software development effort. 1In the future, this knowledge
will also be used to provide the overall assessment functionality
of the SME.

Obviously, the collection and validation of these rules and
relationships is a major task. The research into this part of
the SME will involve continual iteration and evolution. However,
by establishing a baseline set of software rules and
incorporating them into the SME and by constantly integrating
feedback on the validity of the conclusions and knowledge, the
SME knowledge base will mature intoc an even more valuable
component of the system.

3.0 SME Architecture and Functionality

The SME architecture is designed to integrate the three
major components described in section 2 into a tool which
provides the manager with the functions of comparison, analysis,
prediction, and expert guidance (see chart 7). The major
processing of the system is performed on a VAX 11/780 and is
written in Pascal, with the user interface and some data handling
procedures performed on IBM/PC compatibles. The selection of
this particular hardware architecture was driven by the desire to
make SME accessible to managers in their offices and to provide
color graphics capabilities. The remainder of this section is
devoted to describing the major functionality of the SME:
comparison, analysis, and prediction.

3.1 Comparison (charts 8 and 9)

The comparison function of the SME is designed to allow the
manager to view project data on measures of interest such as
effort, lines of code (LOC), CPU utilization, etc. and to compare
these measures to past projects and to models of the normal
project. Comparison utilizes the SEL data base and current
project data along with models and measures of the typical
project. Providing the comparison feature allows the manager to
determine how the current project is behaving as it compares to
past similar projects as well as whether or not the current
project is following the "typical" pattern for that particular
measure. In the examples chart 8 shows a comparison of the
number of errors on a current project against the number errors
on a past project, while chart 9 shows a similar comparison,
except that the past project is replaced by a model of errors
committed for the environment. These types of comparisons are
available for a variety of project measures:; they enable the
manager to examine the characteristics of the current project in
the context of other projects.

3.2 Analysis (chart 10)

J. Valett
NASA/GSFC
4 of 21

Giving the user the knowledge of experienced software
managers, the analysis function provides insights into the
strengths and weaknesses of a project. Utilizing the SEL
database, the current data, the models and measures, and the rule
base, the analysis function compares the value for a certain
measure for a current project to the model of that measure and
reaches conclusions about why the project is deviating from the
norm. The example shows a comparison of the number of errors on
the current project with the model for errors. Since the number
of errors is below what would be expected at this point in the
software development, the SME can provide analysis as to why this
condition may be occurring. The example illustrates a use of the
rule discussed in section 2.3. While this is an elementary
example, it does show the type of information SME provides. This
type of analysis provides the manager with valuable insight into
potential problems that might be occurring on the project of
interest.

3.3 Prediction (chart 11)

Based on the current status of a software measure, the
prediction function attempts to estimate the behavior of the
measure through the completion of the project. Making heavy use
of the models and measures along with the data for the project of
interest, this function gives managers reasonable estimates of
key project parameters. For example, given the current system
size in LOC, information regarding the project’s subjective
profile, and some project estimates, SME predicts the final
system size. Similarly, information on the current phase and
error rate of a project along with certain models and measures,
enables the SME to predict the final error rate for the systemn.
Obviously, these and other key project parameters are invaluable
to the manager in planning and controlling a software project.

4.0 Discussion (chart 12)

While the SME currently provides parts of all the
capabilities described in section 3, it is still considered a
research effort. Much research into each of the functions
described as well as into other more advanced features of the
system is still required for the system to become a fully useful
tool. Thus, the system will change as these features are
integrated into the overall architecture of the system.

In a similar manner, the system will continually evolve as
the knowledge of the environment evolves. For example, although
the current SME focuses on the waterfall life cycle model, as
other paradigms are utilized and adopted within the environment,
these results will be factored into the SME. The SME will
continue to mature as long as research into the understanding of
the development environment continues to provide an improved
understanding of the software process.

Continuing to focus on utilizing the knowledge and
experience of past research in addition to future research, the
SME provides and will continue to provide a valuable feedback
mechanism which encourages the reuse of this knowledge and

J. Valett
NASA/GSFC
S of 21

experience.

The formalization of this reuse into a constantly

maturing software tool, ensures that the knowledge will be
captured and used on future software development efforts. Thus,
the SME should continue to be a useful software management tool
that will provide the software development manager with valuable
information and insight into the quality of a software
development project.

[Basili78)

[Card82]

[Church82]

[Hellers?7]

(Ramsey86]

[Selby87]

[Valett85]

[Valett87]

(Valettss)

J. Valett

NASA/GSFC
6 of 21

REFERENCES

Basili, V. and M. Zelkowitz, "Measuring Software
Development Characteristics in the Local
Environment," Computers and Structures, August
1978, Vol. 10.

Card, D., F. McGarry, G. Page, et al., The

Software Engineering Laboratory, SEL-81-104,
February 1982.

Church, V., D. Card, and F. McGarry, Guide to
Data Collection, SEL-81-101, August 1982.

Heller, G.,Data Collection Procedures for the
Rehosted SEL Data Base, SEL-87-008, October 1987.

Ramsey, C. and V. Basili, "An Evaluation of
Expert Systems for Software Engineering
Management," TR-1708, University of Maryland,
Technical Report, September 1986.

Selby, R. and V. Basili, "Comparing the
Effectiveness of Software Testing Strategies,"

IEEE Transactions on Software Engineering,
December 1987.

Valett, J. and A. Raskin, "DEASEL: An Expert
System for Software Engineering," Proceedings of

the Tenth Annual Software Engineering Workshop,
SEL-85-006, December 1985.

Valett, J., "The Dynamic Management Information
Tool (DYNAMITE): Analysis of Prototype,
Requirements, and Operational Scenarios," Masters
Thesis, The University of Maryland, May 1987.

Valett, J. and F. McGarry, "A Summary of Software
Measurement Experiences in the Software

Engineering Laboratory," Proceedings of the 21st

Annual Hawaii International Conferences on System
Sciences, January 1988.

THE VIEWGRAPH MATERIALS
FOR THE

J. VALETT PRESENTATION FOLLOW

O LdVHD

(0s2)

113Ng NHOr
d3XO3dad 11i8

(D4SH/VYSVYN)
113TVYA NOIP

(ans)
INIWNOHIANI
INIJINTDVYNVIN IHVMLI0S FHL

L00'8LeD

NASA/GSFC

J. Valett
9 of 21

FILMED

b pmite pEpnme
\ i Tk
o Geieie KNI

INTENTIONARLY BLANK

pacE

[LYVHD

ssed0.d Juswdojarsp ey} Buinoidwi ojul YyoIeasal Joy sAL(] e

AunagejreaAe uonewuoyuy| -
souepinb juswebeuey -
10} peaN e

ss800.d JuswidojaAsp aiemyos ay) uo asiuadxs Jo UoNEeNWNIY -
Salpnis 13 JO s)nsay -
13S 8yl ul elep paAIydly -
jo Aljiqelieny e
‘A9 N3IAIHA
SUoye Juswdojansp
Mau 10} uolewlojul pue asuepinb apinold o) 18plo
Ul Juswdojanep alemyos 0} jusuiuad uoiew.oju
|eSlI0ISIY S8zI|iin 1eyl (S|00) JO 18s 10) |00} B 8onpoid 0] YOO

1d3dONOD IS

200'812d

J. Valett

NASA/GSFC

10 of 2]

¢ 1dvHI

£00'8LcO

11 of 21

100(04d JO Ajljenb |[eian0 sujwieldg @ dduepiny Ladx3 't

NASA/GSFC

J. Valett

108[04d JoO
sassauyeam pue syibualls suiwiseq e sisAjleuy ‘¢

(" Aupgergl/iso))
SJUBAS aininj 10Ipaid e uoldIpaid ¢

sjoafoid 1sed yum 108loid Juauno
j0 ajijo.d uswidojansp aredwo) e uosuedwon ‘|

‘BIA 108(oid Buiobuo
ue uo siybisul yum sabeuepy uswdolprsq alemyos syl spinoid

S1v0O NS

£ LYVHI

008120

palojuow useq aAey siosloid g9 Jano
usy) aoulg "ssao04d Juaswdojanap aremyos ay) BulApnis
pue ejep juswdojarap Bunos|ioo uebsq 138 8yl ‘2/61 U

s108lold ainin} 0] synsaJ Ajddy -
a1en[eAa pue saibojopoyiaw Ajddy -
BlEp 109]|00 pue sjos8foid [aAs| uononpold JONUOW - NOILVLINIWIHILX3

(DOT1SM S22-081 spoeloid swos) DOTISH 02-09 8zis abelony -
(s1eah yeis gx) sieah g-1 uoneinp abeisAy - :S193ro4dd

Ja|quiasse pue epy swos :NYH1HOd Alnewnd ‘SIADVNONY

sjuawalinbal asuodsal pue Ayjiqeljal ayeispow
olydelb aAnoeIBlUl ‘paseq punoib ounusRS JHYMLIOS 40 IdAL

INIINNOHIANT NOILONAOHd 13S

NASA/GSFC

J. Valett
12 of 21

seuljepIND

¥ 1¥YHI

‘s1eahk QL 1en0 10} eiep BuizAjeue
pue Bunos|0o usaq sey 133 ay|

§00'8120

N 108f0.d
1
- .
Udlessay uolewuou| ABojopouiaiy .
AN .
aseq ymour) pue abueyn S
< MOINOY ~t—] MMM A sonsusloeey) 100[01d -e— 2 100[0.14
[——— Bleq Jou3
vleQq 92IN0SaYy
sisAfeuy "
| 108(0.1d

eleq wawdojanaq 9JeMYOS S199]]0D T3S

J. Valett
NASA/GSFC
13 of 21

S LYvHO

Juswdojansp asemyos Jo sojni, 01 sajjoid yuswdoaasp
wo.} Buibues soido) BulieAod spodal Q0L J8A0 Ul pajnsal
aAeY Yoteasal paljdde pue sjosloid 135 Jo seipns

€BpY ZEBpy | epy

Wisamisvisiiad

(2861 Aueo/nsaiby) |

asnay uo syoedw| epy e
Bunsey Bunsey Buipeey

[eJMONIS [BUONOUNS ©POD \\}

punod sainsesi\
S10413 S|SPOW
sdiysuonejay

(ve6L Aqies) “
uonenea bunss| e

/\/\ Hou

(8261 ZumoN|9Z/1|ISeq) a|joid Buyeis e

swl]

:seidwex3

SL1NS3H HOHV3S3YH 13S

aseg
ereg
13s

8008120

NASA/GSFC

J. Valett
14 of 21

9861 -UMSEY/HeleA
9861 l|iseg/Aaswey,

9 1dvH)

Buobu@

slebeuew asemyjos pasusuadxs j0 abpamouy
a8y} pue yo.teasal snoinaid uo paseq
padojaAsp usaq aAey sa|nJ juswdol|onap a1em}os

1

1

pajoadxe uey)
[NOIYIP SS9] WB|qoId ¢

wesa] paouauadx3y ‘g

Bunsaey jusoynsuy| “|

‘UsY] [eWIOU UBY] JOMO]

« Sl 81el Jouls ||

:9|dwex3

N

uswdojanag

alemyos
JO sajny

]

uonepieA
‘uonIsinboy
‘sisAjeuy

S37NH LNIINdOT3A3A FHVMLHA0S

40 LNINdOT3A3A 13S

~
o
<
w
—
N
O

siabeuepy
pasuauadx3
YIM SMBIAIBIUY

sainsespy
pue
S|I9pPO

O

J. Valett

NASA/GSFC

15 of 21

L 14VHD

aouepinb Ladxs pue uondipald ‘sisAjeue
‘uosiiedwod yim sisbeuew apinoid o) aseq ajn.
8y} pue ‘sjspows ‘eseq ejep 1335 8y} sazijun JINS

800'8120

SOINSBAN eleq aseq
osed pue 10901 elRq
°Iny s|epop Jusuny 13s
N+ Alquiassy
o01SH 8%
UONBZI[BWION —
‘BuipueH eleqg 19810
5 uosuedwon
ulpueH eje
— uonoIpaid [B9S8d
aoBBIU| JosN — OOme_\dwom x
aouepiny) uadx3

Jd/Ngl

J4NLO3LIHOYHY NS

084/L1L XVA

NASA/GSFC

J. Valett
16 of 21

(perewns3)
pu3

owil

{

108[01d 1sBd X X X X
108(01d JUBLNYD) e
si0413

10 #

SR

BlRQ
Jouig 108f0id e

SOlSUa1oRIBYD
100(0id @

BIRQ UBLINY

solewsy
- _>_m 108{oid @

eleg
108l01d 1SBH @

138

600'8120

NASA/GSFC

J. Valett
17 of 21

¢ 108loud Jejiuis 1sed auo yim
JHVYAINOD 108[0id Aw seop MOH

1Nd1NO F1dINVXd

6 LdvH)

(perewns3)
pu3

awil
10

JNS

100(01d JUBLINY) e

Y

ewil

SA SI0113
JO |8PON @

seinseepy %
SISPON

Y

eleqg
loug efoid e

sofsuaorIRYD
198014 @

BleQ Juein)d

salewns3
108loid e

BlRQ
108l0id 1584 @

aseg eeQ
138

010’8120

s10113
jo #

uswiuoliAug ay) ul 10sfoud feoidA} syl yum
JHVYJINOD 108loid Al seop moH

1NdLNO F1dINVX3

J. Valett

NASA/GSFC

18 of 21

(perewns3) awi |
pu3 10
|

pajoadxs ueyy
INoY)Ip sse| wa|qold g
wes} padusuedxy 2
Buinse) uaioiynsuy| ‘1
'JO asneonaq
[eUIIOU MOJeq SJ0.IT

ISPOIN
108(01d JUBLINY) e

S10113
10 #

Ut 1ldvHD

SN

sonsueloBRYD)
wajqo.d
pue 193/0i4 @

wswdopnaq
M/Sucsanye

S

swi]

A eseg ajny v

SA 81013
10 18POIN ®

sainsesi\

SIapOn

R

eleq
loug 108foid e

JNS

solsuslorIRY D)
109[oid @

BlRQ JUBLIND

)

sajewnsy
100{oid e

1NdLNO F1dINVX3

eleq
108loid 1sBd *

aseg ejeQ
73S

elep Joud Aw (JZATVYNY

1108120

NASA/GSFC

J. Valett
19 of 21

awll
1v 1S 10
I 1 | |

oley
Jou3 uingd

|

aley X
10413 eul4 xxx
h x X % x xX
xxxxxx O07SH 000}
awi| /siou3
1V 1S 10
L | |
8218 Waun) N
X
821 X
wasAg reuly X
X
Iz
XXXy x x x X azig

wajsAs
suonIpald s|dwes

IT 1dVRD

AT

sdiysuonejay
2 |SPON @

sainseay

AT

Bleq
iou3 109[oide

sonsusoRRYD
100(0id e

JINS A

| - salewWiISy
100[01d @

BlRQ
108(014 154 *

138

cL0'8Led

uonewuojut 10efoid Aey | 1013 Hd

1Nd1inO ITdINVX3

NASA/GSFC

). Valett
20 of 21

¢l 1dYH)

Aemuspun Aoeinooe/Aljigesidde jo uoneneA] e
194 ‘uonnguisip/esn [eiouab 104 a|qe|ieAR JON e

OA|0AS [IIM JINS

NG
JuswiuoJinue/swalqoid jo Allsusbowoy sawnssy e

|[opowl 8|0A0 8ji] |[eUS1EM SBUINSSY e

JUSWIUOIIAUS JO abpaimouy Buiulyel/buinciduw)
sajni Mau, ulea’

sdiysuone|al pue sigpow dojansp Ajediweulqg
aAj0Ae Ajenunuod o} st Jdeouod NS

pie juswebeuew e se
|njasn AlaA aq ued ejep 186 0] Ase] e

Ajlusnbaujul 001 Yoegpaes) se pasn e

S1NIOd VNI

(3]
—
@
o]
—
N
O

Ausung ‘¢

SN204 ¢

JINS Jo Buune 8yl g

Ble juswainsesiy aleM]jos ‘|

J. Valett

NASA/GSFC
21 of 21

PANEL #2

SOFTWARE MODELS

R. Tausworthe, Jet Propulsion Labortary

T. Henson, IBM
W. Cheadle, Martin Marietta

D 88-25

A COMMUNICATION CHANNEL
MODEL OF THE SOFTWARE
PROCESS

Robert C. Tausworthe

October 15, 1988

National Aeronautics and Space Administration

JRPE

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91109

R. Tausworthe
JPL
1 of 41

The research described in this publication was carried out by the Jet Propul-
sion Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by
trade, name, trademark, manufacturer, or otherwise, does not constitute or
imply its endorsement by the United States Government or the Jet Propulsion
Laboratory, California Institute of Technology.

R. Tausworthe
JPL
2 of 41

Abstract

This publication reports beginning research into a noisy communication chan-
nel analogy of software development process productivity, in order to establish
quantifiable behavior and theoretical bounds. The analogy leads to a funda-
mental mathematical relationship between human productivity and the amount
of information supplied by the developers, the capacity of the human channel
for processing and transmitting information, the software product yield (object
size), the work effort, requirements efficiency, tool and process etficiency, and
programming environment advantage. The publication also derives an upper
bound to productivity that shows that software reuse is the only means that
can lead to unbounded productivity growth; practical considerations of size and
cost of reusable components may reduce this to a finite bound.

R. Tausworthe
JPL
3 of 41

1 INTRODUCTION

As Boehm [1] notes in a recent article. the computer software industry for vears
has been accused of inferior productivity in comparison to its hardware counter-
part. whose productivity continues to increase at an intense rate. Despite ad-
vances in languages. development environments, work stations, methodologies,
and tools, software projects seent to continue to grind out production-engineered
code at about the same old 8 to 15 delivered lines of source code per staff-day,
Yet, as Boehm also points out, if software is judged using the same criteria
as hardware, its productivity looks pretty good. One can produce a million
coples of a developed software product as tnexpensively as a million copies of a
computer hardware product. The area in which productivity has been slow to
increase is the development and sustaining phases of the software life cycle,

Profit-making organizations may amortize their software development and
sustaining costs over large customer markets, so that low development produc-
tivity is mitigated by larger and larger markets. But government agencies, their
contractors, and non-profit organizations must rely on increases in productivity
to avoid costs and improve quality. Development and sustaining costs are not
often recovered by duplicating the product many. many times.

Software development and sustaining productivity has been the subject of
many articles to date. It is also the focus of this publication, which is. in a sense.
a mathematical proof of Brooks' [2] assertion that “there is no silver bullet.”
The avenues for productivity improvement have been adequately sumimarized
by Boehm (1] as

1. Get the best from people.
2. Make the process more efficient.
Eliminate steps where possible.

Stop reinventing the wheel.

oo

Build simpler products.
6. Reuse components.

All of Boehm’s steps above, except the first, are human-informatton:iaput
reductive. Software tools, aids, support environments, workstations, office au-
tomation, automated documentation, automated programming, front-end aids.
knowledge-based assistants, information hiding, modern programming practices,
life-cycle models, common libraries, application generators, next-generation lan-
guages, etc. all save labor by supplying or modifying information at a faster
rate or more reliably than can be done by humans.

Software 1s information for computers that 1s made from information sup-
plied by people. Some of the human input information may be new, and some

R. Tausworthe
JPL
4 of 41

may be reused. perhaps altered for the new application. Some of the output
information product is thus new, and some may derive from legacy, perhaps al-
tered for the function intended. It is therefore intuitive to think of productivity
in terms of the amount of information appearing in the output product relative
to the effort required from humans to supply the needed information relating
to that product. We shall more precisely define productivity using this concept
a little later; for the present, let us merely acknowledge that software produc-
tion capacity increases when the effort required fromi humans in supplying the
information needed to construct a given product is reduced.

It is reasonable, then, to put information and communication theory to work
on the theoretical capacity of productivity. In 1949, Claude Shannon (3] proved
that communications channels have thecretical information transmission rate
limits that are influenced by their channel configurations. signal-to-noise ratios,
and bandwidths!. Humans and computers developing software are communi-
cations devices and channels, and therefore subject to Shannon’s law. Humans
are capable of transmutting information only at a rate below their capacily limu
[4]. The channel may transmit more data volume than the actual number of in-
formation bits due to redundancy and encoding: however, the information rate
of bits emanating from the output (z.e., the output entropy) may not exceed
the rate that information bits are input {the input entropy). In the parlance of
information theory and thermodynamics. there can be no “Maxwell's demons”
in the channel.

When building an information product, part of the input information needed
is in the form of “black box” specifications of functional and performance re-
quirements. Some of this is new, supplied by humans, and some of it is old.
retrieved from other existing sources. But which portions of the old informa-
tion are to be reused, and how they are to be located, extracted, modified, and
integrated with the new information comprises more new information that also
must be (largely) supplied by humans.

Once a new or modified software product has been developed, both it and its
components are candidates for reuse in forthcoming software products. Thus.
the repertoire of reusable objects may grow without bound as the industry wends
its way into the future. Reusable objects may be envisioned as new functions ap-
pended to an extensible implementation language that may be used in the next
project. The conceptual minimum information required at the human input
interface is merely that required to select the language features to be used and
to integrate them properly into the operating product(s). In the ideal, we may
look to automated and knowledge-based tools to supply the other necessary
searching, manipulative, transformational, and inferential information associ-
ated with matching function-to-language-feature correspondences, integration
and construction of the product, and validation.

The question arises, then, can the information content of the output products

1 The most popular form [3] of Shannon's law is Co = Blogy(1 + S/N).

R. Tausworthe
JPL
5 of 41

NEEDS PEVELOBMENTL . prODUCT

USE AND
EVALUATION
CHANNEL

BEHAVIOR
MODIFICATION Fﬁé%sdw
CHANNEL ‘

Figure 1: An abstract product life cycle process.

in such an ideal software environment continue to grow at a faster rate than the
input rate, or is productivity growth limited by some form of “Shannon limit?”
If so, what are the factors which control that limit? This publication develops
a framework for answering these questions and characterizing the solutions.

2 THE COMMUNICATIONS ANALOGY

The discussion above characterizes the software development process as one in
which, as in Figure 1, various kinds of information are supplied by humans
toward implementing a product whose form is also information: documents,
programs, parametric data, databases, and test data. Software development is
thus an Information-Input/Information-Qutput (I120) process. In like fashion,
the use and evaluation of software products are also 130 processes. Even the
behavior modification that shapes needs based on the level of satisfaction derived
from use and evaluation of the products is, to some extent, an 30 process.

An 130 process may thus be portrayed, for purposes here, as a noisy com-
munication channel with the following traits:

1. Transformational. Output information (1.e., the product) exists in a dif-
ferent form than provided in the input (i.e., requirements).

2. Distortive. Some input requirements may be implemented differently than

R. Tausworthe
JPL
6 of 41

intended.
3. Erasive. Some of the input requirements may not have been implemented.

4. Spurious. Some features implemented may not have been specified in the
input requirements.

Random delay. The transport time from requirements to product is a
variable time, only partially predictable.

o

6. Random cost to use. The cost in dollars and effort needed to transform
requirements into products is only partly predictable. The cost of products
is the cost of operating the channel.

7. Non-stationary. The uncertainty aspects of the channel vary with time.

As is true of other communications systems, the channels themselves must
be constructed before they can be used, at a certain cost. 30 channels consist of
people and machines working in randomly connected orchestration. Moreover.
the 130 channels that are used to construct products are themselves the products
of other 130 channels. Thus, if carried too far, the analogy becomes more
intricately interconnected, complex, and difficult to analyze, but perhaps more
true to life.

Software problems restated in terms of 130 channels are:

e channel costs are too high.

throughput delay 1s too long.

input/output correlation is too low and difficult to validate.

input and output are not entirely quantifiable, consistent, nor tangible.

e cost, delay, and throughput are not entirely predictable nor controllable.

More microscopically, an overall communications channel may be viewed as
an interconnected network of noisy components and sub-channels. In analogy.
high-level software problems decompose into smaller interrelated contributory
problems, deriving from many sources. During the conceptualization, require-
ments capture, and alignment processes of the product cycle, distortion and
noise (faults) derive from unknown or unrecognized needs, unexpressed needs,
wrongly expressed needs, conflicting needs, non-stationary needs, and inability
to quantify and articulate needs. During the implementation and alteration
stages, noise comes from misunderstood or ambiguous requirements, conflicting
views of utility, inability to simulate a product in entirety, inadvertent omis-
sion, conflicting requirements, and unfeasible requirements. During the testing
and validation stage, difficulties arise in the combinatorial impracticality of cer-
tainty, in the need for an operational environment in some actual or simulated

R. Tausworthe
JPL
7 of 41

form. in the need for the product in a simulated or completed, mature form.
and in the need for definitive acceptance criteria. Ultimately, the evaluation and
enlightenment processes require products and operational environments in coni-
pleted or simulated form. and are exposed to imprecise, subjective, intangible
satisfaction criteria.

Typical considerations which relate to, contribute, or cause these problems
are the complexity of the [0 channels and the products they produce. the
stochastic behavior of people, and rapidly changing hardware and software
technology. Moreover, our understanding of the software process is still in
its evolutionary stage: Tools, environments, and systems are only moderately
sophisticated. Methods. models, and theoretical bases for development and
product analyses are sparse and largely invalidated. Preparation of products
for legacy has often not been properly consummated during development. The
reuse of inheritance has been difficult, even when legacy goals are adequately set
and fulfilled. Automated knowledge bases for software engineering and applica-
tions domains are in their infancy. The transmission medium (i.¢., human lan-
guage) lacks precision in many contexts. And, finally, the skill base of software
personnel has not yet been adequately oriented to a disciplined, standardized.
industrial-strength engineering approach.

Feedback is commonly used in electronics to stabilize performance. How-
ever, the high costs and long delays in [0 channel usage tend to inhibit firm,
immediate feedback for risk of fomenting an unstable situation and incurring
vet higher implementation costs and longer delays.

The communication system approach to improvement of channel perfor-
mance, however, is simple and straightforward:

I. Measure and characterize the channel and its parameters.

2. Expect transmission to be distorted, noisy, and delayed, and provide ap-
propriate compensation.

3. Design the information throughput rate to be within channel capacity
(as, e.g., Shannon’s limit, or other formula applying to the particular
channel?).

4. Remove redundancy in the source information before transmission.

5. Make the transmitted information be resilient to channel disturbances by
using effective encoding and decoding techniques.

6. Transmit information through the channel with as great a signal force as
possible.

7. Take steps to reduce disturbances within the communications channel.

2Software production capacity in the absence of fault generation and correction is given by
Eq. 25.

R. Tausworthe
JPL
8 of 41

| _———f\ /_\ i
N
| NEEDS CAPTURE | REQUIRE -} | IMPLEMENT- M
3 ' MENTS ATION \PRODUCT] !
. N _ . / |
W |
VG |
|
|
L

|

|

| UNREALIZED

| NEEDS — = /“\
| | ERRORS
I

I

|

|

|

I

|

TEST
REALIGNMENT (vs
REQUIREMENTS)

ENLIGHT- EVALUATION

\ ENMENT | (VS NEEDS!
L

THE CRITICAL LOOP

EACHBOX REPRESENTS A CHANNEL

BEHAVIOR ACCUSTOMIZATION
MQODIFICATION

Figure 2: The 130 life-cycle channel model.

8. Use feedback to correct errors.

The goal of this publication, then, is to characterize and quantify software
production in analogy with communications theory, and thereby it terms of
measurable, causal, and controllable factors.

3 THE SOFTWARE CHANNELS

A basic idealized production configuration was depicted in Figure 1, where needs
are faithfully projected in the form of information through the development
channel to yield information products, which are then used, evaluated, and may
lead to a certain level of satisfaction. Use and accustomization beget behavior
modification, which, in turn, elevates the original set of needs toward higher
levels of automation. Not present in this ideal are the intrinsic distortions,
faults, and other flaws that produce less-than-ideal products, incomplete levels
of satisfaction, and, perhaps, unfortunate modifications of behavior that limit

the tendency toward higher automation.

R. Tausworthe
JPL
9 of 41

A refinement of this concept is shown in Figure 2, where the processes as-
sociated with channel imperfections are displayed more prominently. Needs are
projected through a capture channel to produce a requirements specification:
requirements are transmitted via an implementation channel into the product
set, the product set is put through a testing channel to reveal (some of the)
errors; errots are fed into the alteration channel, which (partially) corrects the
product set; evaluation of the product set against stated requirements often re-
veals shortcomings, leading to an enlightened state; and enlightenment guides
the process of requirements realignment. Usage of the product set. as earlier.
produces a level of satisfaction (not necessarily complete), which alters the state
of need through behavior modification.

Each of the information transmission channels and information sets can be
further dissected and detailed for better understanding of the transformation
processes and better accuracy in modeling the software phenomena.

The critical, and perhaps less philosophical. portion of the refined software
channel analogy is shown inside the dashed lines of Figure 2. This portion com-
prises the software development and sustaining segments of the life cycle. Note
that the analogy can be made to simulate information transmission aspects of
the “ordinary waterfall” life cycle, incremental development, rapid prototyping,
evolutionary enhancement, and “spiral” life cycle paradigms merely by suitable
definitions of channel characteristics. In the next section, the software channel
analogy is used to develop a refinery model of software productivity, to which in-
formation and communication theory are applied to derive statistical limitations
on human capacity to produce larger and larger software systems.

4 THE IMPLEMENTATION CHANNEL

The assumed software implementation components are illustrated in Figure 3.
Five forms of information input by humans are identified: requirements (func-
tion, performance, and constraints), transformational (design and coding), com-
binational (integration), corroborative (validation and verification), and man-
agement (status and control). Each of these potentially contains imperfections
in the form of accidents (inadvertent, random faults) and distortions (deliber-
ate, non-random faults). Together, these latter two constitute a sixth type of
information input by humans that we shall collectively refer to as noise. Also
shown is the set of products resulting from the inputs.

Generation and application of the above input information to the software
implementation channel is assumed to constitute the entire expenditure of hu-
man effort. Information generated by humans is mental, verbal, and docu-
mentation, and only the last of these is amenable to measurement. We must,
therefore, hypothesize that the capture of information in memoranda, docu-
ments, code and comments, parametric and test data, efc., is representative of
and correlates significantly with the total outlay of effort.

R. Tausworthe
JPL
10 of 41

,’/—\ P /\\
PRODLCT O INTEGRATION rest
NOSE L. SESIGN

INFORMATION | V&Y
SPEC!FICATIONS .

PRODUCT O\
CODING i
. INFORMATION /

PR

1 T
pRODUCT I ly

i . Vi it
REQUIRE - — TRANSFORMER —e COMBINER —e CORRCBCRATOR e PRODUCT\‘

MENTS

MANAGEMENT
INFCRMATION !

~__

Figure 3: The software production refinery.

Output products are viewed as condensations, transformations, and refine-
ments of the information that came into the environment; hence, we refer to the
implementation process as the Software Refinery. Productivity improvement
in the refinery is tantamount to reducing the amount of human-supplied input
information required for a given output product set.

Effort-intensive input information requirements will be minimized by elimi-
nating redundancy and by reusing existing information whenever feasible. For
example, if a system has a requirement for a word processor of a known type.
then the single expression “Wordstar® 4.0” could be used to convey unambigu-
ously all the characteristics that the cited word processor possesses. Moreover,
if there were only 1024 = 2!° word processors in the world, only 10 bits would
be needed to distinguish Wordstar among its competitors. Only exceptional and
incremental information would be then be needed to specify a slightly different
capability desired. Additionally, since Wordstar already exists, further infor-
mation relating to design, implementation, and testing is not required, except
where it relates to the integration of that package into the system being built.

Also, when documents must be developed to contain previously generated in-
formation (i.e., “boilerplate”), the only information conceptually required from

3Wordstar is a registered trademark of MicroPro, Inc.

R. Tausworthe
JPL
11 of 41

the human is where to find the boilerplate, how much of it to use, where to put
it. and any necessary alterations.

For the remainder of this publication, we shall focus on that information
leading to the program (set), or product yield. Therefore, effort and informa-
tion used to produce documents is limited to that which is yield related. These
include requirements documents, design specifications, project plans and sta-
tus reports, test plans and procedures, and the like; preplanning, applications.
operations, and maintenance documents are excluded at this time. We have
hypothesized that the information content of these entities correlates strongly
with the total project information. By measuring the information contents of
software project documents and output yields, then, quantitative relationships
among input information and output yleld may be established.

Transformational and corroborative information input needs are potentially
reduced by reusing elements of previous designs and code whenever feasible. In
the ideal, fully automated case, this reduction could be almost complete: au-
tomated catalogs of solved problems would be searched using knowledge bases
having extensive application domain-dependent inference and design rules that
match functional and performance requirements with known solutions and de-
signs, designs with working code, efc. In the ideal automated software refinery,
the amount of input noise, and thus the need for corroborative information,
could also be drastically reduced. The ideal software refinery is shown in Fig-
ure 4.

Although much of the integrative information would also conceptually be
supplied by automation, some will nevertheless still be required from humans
to relate interdependency among functional features, data flows, and orders of
precedence.

We model the software production refinery in the form of an extensible lan-
guage. That is, the human information input I is used to develop the output
yield Y from new information and from instructions to reuse existing informa-
tion and previously developed parts that operate within given time and data
precedence constraints.

The distinguished components of the input Z are {Figure 3)

I=T,Ul4UI. UL, uIl,Ul, (1)

These terms represent, respectively, requirements, design, code production, inte-
gration, test (including validation and verification), and management informa-
tion sets. Each of the input sets potentially contains faulty information, or
noise.

In particular, we shall assume that the requirements term, Z,, can be isolated
to contain the functional, performance, and algorithmic specifications and con-
straints, so that, in concept, a fully automated programming environment could
produce the output yield in the current refinery without further information.

We define the inherent product specification, I*, as the least practical infor-
mation required to specify the output yield uniquely. It is the mapping of the

R. Tausworthe
JPL
12 of 41

BREAKDOWN
" PRODUCT INTO /_\
INFOR- DESIGN SU:SRLS’BEPEMS tc::omawen' I
‘ ENGIN ORROBO- PR |
\ MATION GINE AND FIAT%RO oDuCT
INTEGRATIVE

JOMAIN KNOWLEDGE 1

INFERENCE RULES |
DESIGN RULES ;
QUALITY CRITERIA |

S~

Id'[c']v°1(

INSTRUCTIONS,

CATALOG OF
SOLVED
PROBLEMS

INVENTORY OF
REUSABLE
PARTS

Figure 4: The ideal software refinery configuration.

input information through the production transformation
nI)=1" (2)

Conversely, that subset of the input, denoted I. that traces to the as-built
product is defined by the inverse production transform,

I =1 (3)

Note that this traceability may not necessarily be direct: Constraints, perfor-
mance requirements, and design goals in T certainly influence the resulting I~;
but it may be difficult indeed to correspond any tokens of the output product
with tokens of the input information. Therefore, T should be regarded as that
(amended) form of T that got built.

The sets of fulfilled and unfulfilled requirements are described by

and
I.=1,-1; (3)
10

LLITY T usworthe

13 of 41

respectively. That is, Z; is that portion of I, that got implemented. and I, is
the remainder of 7,.

The executable program, or apparent yreld J will include the inherent prod-
uct specification, Z*, as well as the Z7 of each of the n modules in the refinery
invoked by I°, as transformed by the compiler and linker into a functioning
unit.) will normally be sensitive to compiler and linker characteristics, such as
type and degree of code optinuzation. extent of program and data segmentation.
etc. Thus, we define the inherent functional yield, Y=, as the join of inherent
product specifications over all components comprising the final product.

y=r; (6)
1=0

in which Ij = I~.
We denote the sizes of these sets by

I = |Tg fork =r.d.citm (7)
I = |I] <L+Li+lL+L+1L+]1n ()
rr =.1;=|T (9)
I = |17 fori=1,....n (10)

Y (1)

Y* = zn:l" (12)
i=0

Naturally, I < [, by Shannon's law, and a fortiort [* < [. Also, [< Y
because I* C Y*.

Input information is perhaps most meaningfully measured in terms of the
chunks [4] that humans treat as units of information in memory and recall.
However, the mechanism for chunking is not yet well enough understood (at
least, by the author) to be able to compute an input information chunk measure.
Rather, the first-order entropy [3] based on word and symbol, or token, counts
and vocabulary usage will be used:

Rk B

He = = pealogypes fork=rd ¢ i t,m (13)
1=1

Iy = NH (14)

Here, R; is the size of the Repertoire, or vocabulary, of words and symbols
used in T, pi; is the relative frequency in usage of the i-th word or symbol in
that repertoire, and N; is the total number of words and symbols used. Since
words and symbols represent first-order chunking by humans, the information
first-order entropy measures should correlate strongly with information mea-
sures based on chunking. Evaluation of higher-otder entropy (phrases, syntactic
forms, etc.) may be appropriate for study at a later date.

R. Tausworthe
JPL
14 of 41

Segments of documents that are included from other sources should not be
counted this way. because the apparent information content would be higher
than that actually supplied by humans (this time) for its reuse. If such por-
tions can be handled separately, the true human input involvement can more
accurately be approximated.

We similarly characterize the inherent input content 7* and output vield V*
in terms of the features of the extensible language. Let R be the number of
unique operators and operands that already exist in the current refinery lan-
guage repertoire, or vocabulary. This number will include both the basic set of
built-in functions. as well as every function that has so far been made available
to the refinery for reuse (every new function produced is a candidate for reuse,
if applicable and feasible). Next, let n denote the number of unique refinery
operators of this repertoire actually required for implementing the current ap-
plication. Then, let d signify the actual number of unique input/output data
operands appearing in I°, and let .V be the total number of operators and data
operands appearing in I*. Finally, let .}7; represent the average inherent yield
of the n refinery operators invoked by I~.

The inherent product information Z* is just sufficient to specify the product
vield; in this, it is a translation of I, into specific refinery terms. It specifies
the needed functions of the repertoire, the inputs and outputs of each, and the
integration of these elements into an appropriate sequence of instructions. We
note, then, that Z* is refinery-dependent, because it depends upon the richness
of the repertoire at the time of use. To a first-order approximation, I* will be
equivalent? to N instances of n + d unique operator/operand types arranged in
proper order. The minimum average number of bits needed to specify any one of
the R operators of the current refinery or d data elements of the current operand
vocabulary is the first-order entropy H*" of the refinery and data repertoire.
Thus, in analogy with Eq. 14,

R+d

I* = NH' =-N Zpilogg Di (15)
i=1

< Nlogy(R+d) (16)

However, since usage statistics of the refinery and ensemble of applications are
unknown at this time, the measure above can only be approximated. For prac-
ticality and consistency across languages, the size of the inherent product speci-
fication will hereafter in this work be approximated® by its upper bound above.

4One may need to normalize [* across semantically equivalent syntactic constructions of
the refinery language. For example, the C language form “x = x + 1" contains 5 tokens,
whereas the form “x++" contains only 2. The information content of the two is the same.

5Since [* only appears in the productivity equation in ratio with Y *, defined in Eq. 18,
which is also evaluated in the same way, error due to this approximation will normally be of
second order importance.

R. Tausworthe
JPL
15 of 41

also known as the Halstead program volume [5],
I = Vlogy(R + d) (17)

Note that language processors. for practicality, generally represent tokens using
fixed-bit-length internal representations, rather than by variable, frequency-of-
use-derived {entropy based) ones. This practice also requires the use of at least
log.(R + d) bits per token.

Finally, we express the size of the inherent functional yield as

Y*=1'4+nY¥, (18)

The software refinery model thus provides absolute relationships among the
current refinery vocabulary size and the average yield of those operator modules
in the refinery that were used. Note that I*, Y*, n, and 7:‘ can all be determined
as measurable properties of the software refinery and the current application
program. The reuse portion of the product yield, Y* — I* should be measured
in the refinery language that would be used to reimplement it, regardless of the
language used originally to implement it.

5 THE PRODUCTIVITY EQUATION

Let W denote the total work effort (measured in work-months) required to
develop an output information product yield Y from a given information input
set I supplied by humans. Productivity is defined here as the inherent functional
yield per unit work, in total bits per work-month,

j— Y’.
T W

P (19)
The use of the inherent functional yield, Y*, in this definition, rather than the
actual apparent yield, Y, which also includes data yield and compiler quirks, is
quite arbitrary, but conforms to a practice analagous to counting “executable
lines of code,” as opposed to “total lines of code.” Although Y may perhaps
be easier to measure than Y*, it is, nevertheless, an inadequate indicator of
productivity because of its compiler dependence: a better compiler would seem
to lower productivity®.

The average rate at which a given population generates information of a
specified type is their mean work capacity, C, in bits per work month,

I

= 20
A (20)

8This fact was pointed out to the author by Robert D. Tausworthe of Hewlett-Packard.
Inc.

R. Tausworthe
JPL
16 of 41

where 17 is that amount of work required to generate the information 7 in an
ideal environment where locating existing information, capturing new ideas, and
preparing these for use are immediate (i.e., Wy is measured as the actual work
effort minus the location, capture, and preparation effort). C conceptually.
then, is a function of problem complexity, human intellect, experience, skill.
motivation, work conditions, staff interaction, and emotional and psychological
factors.

We know from experience that human capacity has a limit, so we define
the potential information capacity, Cy, as the ideal value of C that could be
achieved if the workers were to be relieved of adverse problem, environment,
and human factor encumbrances, and were working at a maximum reliable pace.
The unitless ratio

C
=G <1 (21)
then represents a mental acuily factor. Since labor wasted in capture and lo-
cation of information, etc., has been eliminated from . it is only independent
on environment and tools to the extent that these stimulate individual work
capacity. We may note that p will tend to be greater when I is produced well
within the skill, experience, and understanding of the staff, at a motivated pace
of work, and in a smoothly operating and happy otganization. However, u will
tend to decrease with other attributes, such as application complexity (1] and
staff size [6]. Much of the behavior of y has been calibrated in various software
cost models, where a variation of 500:1 has been noted as necessary to span the
range of contributory factors. Consequently, the value of u for some projects
may be on the order of 1073
Next, we define requirements efficiency, p, as the unitless ratio of inherent
product specification and requirements information measures,

p=§—51 (22)

This ratio indicates the level of superfluity between information specifying the
as-built product and that contained in requirements information. It is partially
a natural characteristic of the requirements and refinery languages being used,
but also will depend considerably on the style of the individual(s) writing the
requirements, the complexity of the problem, the extent to which fulfilled re-
quirements lead to measurable product specifications, the extent to which stated
requirements are fulfilled, the amount and distinguishability of new and reused
requirements information, and other factors. Measurements of p are needed
to calibrate the effects of these factors, and to establish norms for its use as
a requirements efficiency indicator. A ball-park figure for p based on a few
document-to-code size estimates is about 0.1.

The ratio of requirements information to total input information reflects the
relative degree to which design, coding, test, and management information are
required from humans for a given problem. The ratio of Wy to W is the effort

R. Tausworthe
JPL
17 of 41

efficiency in location, capture, and preparation of information. Together. these
ratios express the efficiencies of methods, tools, and aids relative to an ideal en-
vironment. Labor-saving methods, tools, and aids are those that tend to reduce
the amount of effort required to generate, capture, or prepare a given amount
of information. Examples are word processors, design languages, automated
graphics. and data dictionaries. [nformation-reductive methods, tools. and aids
are those that tend to reduce the amount of information that is required to be
generated by humans. Examples here are symbolic notation, automated design
assistants, and test case generators.

We combine these two effects into the fool factor, r, defined as the unitless

ratio / W
r 0

= — — 1 < 2.

T (I)(W)“l (23)

This coefficient reveals the amount of human information, and thus labor, that
potentially can be eliminated by methodology, automation, and practice. It
provides a simple means by which the effectiveness of solution methods, tools.
and engineering processes can be quantified by actual measurements. Note
that 7 is very likely to be influenced by the amount of information that must
be processed; the greater [is, the greater the difficulty of the human task in
coping with it. Thus, we may expect to see the effectiveness of well-designed
tools increase as the size and complexity of the project it is applied to increase.
A rough estimate of r from some document page and approximated human
eflort ratios is about 0.01.

Finally, the refinery language advantage, A, is defined as the unitless ratio
of the reused portion of the output functional yield to the minimum product
specification: .

Y*-I" nY,

A= = (24)
This coeflicient is quantifiable from token and vocabulary counts in the current
refinery model. It represents the information gain factor due to reuse, and
signifies how large a product yield can be generated from a minimum product
specification in a given refinery environment. Because it is a unitless ratio, A
should be less dependent on a particular refinery than are /* and Y ” individually,
since common tendencies tend to cancel out. A value on the order of about 15
was measured for a group of small C programs using the ANSII standard library
functions.

The productivity equation then follows straightforwardly:

P = GCoppr(l+1A) (25)
< Co(l+A) (26)

The productivity formula is intuitive: the smallest sufficient requirements
definition, the most effortless implementation, and the most propitious usage of

R. Tausworthe
JPL
18 of 41

tools and methodologies yield the highest advantage: reuse of previous products
as new available refinery features yields a higher language advantage.

The upper bound above would be replaced by equality under the condition
upr = 1. a situation clearly requiring the existence of automatic programming.
The bound thus shows that the effectiveness of automated programming envi-
ronments will be determined by the extent of reuse of components in the refinery.
Moreover. the only route to unlimited productivity growth 1s through the effective
reuse of tncreasingly larger and larger software components.

6 LANGUAGE ADVANTAGE TRENDS

It is a remarkable fact that there are statistical laws in natural and computer
languages that relate the total number of occurrences of language token types
(word types in natural language, and operators and operands in computer lan-
guages) to the vocabulary of distinct types used. Laws of this nature were first
studied by Zipf [7] in the 1930’s in connection with natural languages. Others.
notably Halstead [5], Shooman [8], Laemmel [9], Gaffney {10], and Albrecht [11].
have extended the study to computer languages and specifications.

The assumption of the method is that the specifications and the programs
that embody those specifications are two descriptions of the same thing. Knowl-
edge of one correlates with knowledge about the other. For example, 1t is rea-
sonable to expect that a statement of basic requirements for a program includes
an itemization of its inputs, processing, and outputs, viewed externally. This ex-
ternal statement translates, through the works of Zipf, Halstead, and the other
authors cited above, into approximate measures of the output product yield.
These measures generally agree within about a factor of 2; hence, we introduce
a factor ¢ to account for the difference between Zipf's first law and the true
refinery model token length characteristic.)

Zipf's first law, for example, predicts the approximate token length N of 7°
as the value

N = (n+d){y + log(n + d)] (27)
where v is the Euler constant, ¥ = 0.57721.... The factor (= N/N makes
the equation exact, by definition:

1
N = Z(n+d)[‘7+log(n+d)] (28)

The token-length correction factor ¢ fluctuates from program to program, but
ranges approximately between 0.5 and 2.
The refinery language advantage, therefore, is

(n?l
(n + d)log,(R + d)[y + log(n + d))

(29)

R. Tausworthe
JPL
19 of 41

CY, log 2

< log n log R (30)
(Y, log 2
< Yo 8° (31)
log™ n

which, as may be noted, is limited only by average utilized module vield and
vocabulary size. As they stand. these expressions are not statistical: A.(, Y.
and n are determined by the particular program. Averaging A over an ensemble

of programs would yield a statistical bound, however, of the form

- (32)
log= 7@

for A = E(A) and appropriately defined ¢ and 7. This statistical form of the
bound reveals that. in order for the refinery language advantage (and thus,
productivity) to grow without bound, the average yield of refinery modules
being used by applications must grow faster than the square of the logarithm
of the number of refinery modules being used. That is, it must happen that
modules of increasingly higher yields are regularly added to the refinery and
regularly used. A software refinery with a static, non-ezpanding library imposes
a fired productivity limit on its workers.

7 FUTURE WORK

The work reported here is a part of the newly-begun NASA [nitiative in Soft-
ware Engineering (NISE), and is coordinated with other NISE investigations,
notably the development of a dual life-cycle paradigm (separating, but interre-
lating management and engineering processes), the development of a dynamic
software life-cycle process simulator, behavioral researches into the performance
of humans in the software process, and the synthesis of effective supporting
methodologies, tools, and aids.

This first publication reveals only a few rudimentary aspects of the software
life cycle process, here modeled as productivity channels refining crude infor-
mation into highly distilled products. The principle results apply only to the
implementation channel, or software refinery. The effects of information noise,
the stochastic behavior of people, the detailed character of the other individual
component channels, and the dynamic behavior of interacting channels remain
to be analyzed and validated.

For the implementation channel, near-term work remains to evaluate Cy, p.
p, 7, and A in a static, low-noise context. Insight into Cy and g may be sought
in human behavioral research journals. Later work may involve experiments in
collaboration with academic researchers.

Typical p and r values may be determined by measurement of documents
and programs in existing project libraries for which effort statistics are available;

R. Tausworthe
JPL
20 of 41

regression with perceived contributory factors would then quantify effects and
suggest avenues for productivity improvement. Studies of r and p may be
expected to calibrate benefits of selected methodologies and tools.

Still other studies remain to examine the statistical behavior of A as a func-
tion of the refinery size and reuse policy, to determine whether there are natural
limits to productivity growth, and thus, to resolve the question posed by the
upper bound in Eq. 31 above.

Further research will quantify the behavior of the other component chan-
nels of the production life-cycle model, as well as the dynamic interaction of
information flows in the model, notably those within the critical loop shown in
Figure 2.

8 CONCLUSION

This publication has developed a model of the software implementation process
that formulates productivity as a product of tangible, definite, measurable, and
meaningful factors. The model characterizes productivity as stemming from
five weakly interrelated factors: human information capacity, mental acuity, re-
quirements specificity, methodology and tool efficiency, and refinery language
advantage. Each of these factors was shown to have absolute, explicit, and
measurable bounds: Human performance is limited by inherent human channel
capacity and by the degree of mental acuity that can be achieved toward real-
izing that capacity. Requirements efficiency is limited by the minimum as-built
product specifications and the extent to which requirements specifications can
be freed from extraneous, superfluous material. The effectiveness of tools and
methodologies is limited to the amount of human (labor) input that can be
avoided. And finally, the effectiveness of a programming environment is limited
by the average growth in yield of modules in that environment.

These factors serve as absolute standards for comparison purposes: u reveals
how well the staff are meeting their potential; p expresses the level of superfluity
of requirements; T quantifies the effectiveness of methodologies, tools, and aids;
and A indicates the power of the refinery. Use of these standards will lead
to meaningful tradeoffs and, potentially, to an eventual optimized software life
cycle.

R. Tausworthe
JPL
21 of 41

References

(1]

(2]

Boehm. Barry W., “Improving Software Productivity,” Computer. IEEE
Computer Society, Vol. 20, No. 9, 1987, pp. 43-37.

Brooks, Fred P., "No Silver Bullet—Essence and Accidents of Software
Engineering,” Proc. [FIP Congress 1986, North-Holland, 1986, pp. 1069-
1076.

Shannon, Claude E., “Communication in the presence of noise.” Proceed-
ings of the I.R.E., Vol. 37, 1949, pp. 10-21.

Miller, G. A., "The Magical Number Seven, Plus or Minus Two: Some
Limits on Our Capability for Processing Information,” Psychology Review.
March, 1956. pp. 81-97.

[5] Halstead, M. H., Elements of Software Science, Elsevier North-Holland,
Inc., New York, NY, 1977.

(6] Brooks, Fred P., The Mythical Man Month, Addison-Wesley Publishing
Co., Reading, MA, 1975.

[7] Zipf, G. K., The Psychobiology of Language: An Introduction to Dynamic
Phalology, Houghton Mifflin, Boston, MA, 1935.

(8] Shooman, M. L., Software Engineering, McGraw-Hill Book Co., New York,
NY, 1983.

[9] Laemmel, A. E., and Shooman, M. L., “Statistical (Natural) Language
Theory and Computer Program Complexity,” Polytechnic Institute of New
York, Report POLY-EE/EP-76-020, August, 1977.

(10] Gaffney, J. E., “Software Metrics: A Key to Improved Development Man-
agement,” Computer Science and Statistics: Proc. of the 13th Symposwum
on the Interface, Springer-Verlag, New York, NY, pp. 211-220.

(11] Albrecht, A. J., and Gafney, J. E., “Software Function, Source Lines of
Code, and Development Effort Prediction: A Software Science Validation,”
IEEE Trans. on Software Engineering, Vol. SE-9, No. 6, November 1983,
pp. 639-648.

R. Tausworthe

JPL

22 of 41

THE VIEWGRAPH MATERIALS
FOR THE

R. TAUSWORTHE PRESENTATION FOLLOW

88-0E-11
=124

60016 DIUIO}I|DD ‘DUBPDSDY
ABojouyda| Jo 84n}IIsu| DIUIOJIDD
Ai1oypioqoy uois|indoud jaf

Acll”

ayjIomsno| D 119qoy

SS300Ud PAVMIH40S FHL 40 13dOW
AOOTVNY TANNVHD SNOILLVIOINNWWOD V

R. Tausworthe

JPL
25 of 41

INTENTIONABLY BLANK

z

88-0€-11
Z-10¥

,

SINIWNOYIANI ANV 'JHYMAHVH '37d03d 40 dN IAVIN FHY STINNVHI e

AHVYNOILNTOAI ANV 31VIIHLNI AT3W3IHLX3T SI T3A0ON 1TVHIAO 3HL *
S13A0OW TINNVHO HVTIWIS HIHLO 40 S12NAO0Hd 3HL 3HV AJHL e
171Nn9 39 0L 3AVH NOILIVASILYS ANV ‘'SLONAOYHd ‘STINNVHI e

SJOILSIH3LIOVHVHI AHVNOILVIS-NON e

aSN Ol 1SOJ WOANVH

AV13d NOANVH

A3ONAOYHLNI SHO1IVd4 SNOINVHLXI ‘SNOIHNCS

SHOL1I0Vd 1SO1 ‘3AISVH3

AL173did NI SSOT 3AILHOLSIA
TVNOILVINHO4ASNVYHL e

SOILSIHILIOVHVHI TINNVHD e

STINNVHI IHL NI SMOTd LVYHM SI NOILVWHOLINI e

TJINNVHO
=INOILVII41dOW
HOIAVH3g

z.Om__wwM“_ zmw@w_mm,m hzw.“__z_“%u\omo SQ33N
TANNVHD NOILVOINNWWOD ASION V Al

-13AOW WIT90dd IVML40S JHL

R. Tausworthe

JPL
26 of 41

88-0€-11
€-1D¥

N008 A3HSIN8Nd AT1IN3O3H Vv
ONIZIDILIHO ‘NVWTIN 443r

. d3NddVv 38 NVI SdiNdnd 1Nn08Vv SIW3IHO3IHL

JH1 TV ISNVI38 A3IAT0S 38 T1IM ONIHLAHIAT NIHL

ANV ‘NOILLVLON dITaNd NI SW31804d HIHL O9NIHONOD A9
HOAVE ¥ W3HL Od T1.1 'SdiTaNd 40 AHO3HL 3H1 40 QHVv3H
H3A3IN JAVH SHINWWVYHOOHd QINILHOIININN ISOHL..

Aallr

R. Tausworthe

JPL
27 of 41

88-0¢-11
=124

013 'HLONI T NINOL ‘SLNIOd NOILONNL '3A0I 40 S3NIT
‘JLVINIXOHddV ATNO 34V LNILNOIJ NOILVIAHOLNI 3NHL ONIHNSVIIN HO4 SOIHLIN o

3719V T110HLINOD
HO 319V .101034d A13HILNI LON IHVY 1INAOHd ANV ‘'AV13A '1S0J e

379I19NV.L HON "LNILSISNOD '3719VI41LNVND
AT13HILNI LON 34V (NOILOVASILYS ANV SA3I3AN “3°1) LNdLNO ANV LNdN| e

3LNdWOI OL LT1NJ1441d ANV MO1T OOL SI NOILVTI3IHHOI NOILOVISILVS-01-G33N e

ONO1T OO0l SI AV13A NOILOV4SILVS-0OL-d33N e

HOIH OOl 34V S1S0D 10NAa0Hd ANV T3INNVHO e

SW31903d 1INNVHD NOILVOINNWWOD Tiallf

R. Tausworthe

JPL

28 of 4]

88-0€-11

G-1Dd

TINNVHO V SIN3S3Hd3IH X089 HOV3

ER AR

. dO01 1VII1ldI 3HL

_
L

12NAao0dd

(S@33N 'SA)
NOILVNIVA3

(SLN3IW3HIND3Y
'SA)
1531

SHOHYY3

NOILlVH3ILV

NOILlVY
-LIN3IW3dINI

NOILOV _|NOLLYDId1a0W
“SILVS NOILVZINO1SNIIV dOIAVH3g
o]
|
|
|
|
1INIWNOITV3Y _
|
|
-—————$Q@33N |
@3azIvadNn _
|
S1N
uINGaY IYNLAYD | w SEELY
—]
n-

13AOW TINNVHD d3NId3y Vv

R. Tausworthe

JPL
29 of 41

88-0¢-11
9-124

ALIDVdVI S1I 3SVIHINI LLNVI NOA “1TINNVHO IHL TOHLNOD LLNVI NOA 4| e
3791SV3d SV 'SHOHYHI NOILVHVJOHd 193HHOD OL ¥Ivaa3idd Isn e
SIONVEHNLSIA TINNVHI 30NAd3YH 01 3781SS0Od S HIAILVHM OQ o

37181SS0d SV 33404 TVYNODIS V LVIHO SV HLIM NOILVYIWHO4ANI LINSNVHL e

(ON1G023A/9NIAOIN3)
SIONVEHNLSIA TINNVHO OL LNVITISIH 39 OL NOILVYIWHO4ANI 3LVINWHOLA e

(NONNVHS) Aw_f FV ¢9018 = 09

ALIDVdVI TINNVHIO MO1348 38 O1L LNdHONOHHL T3INNVHI NDIS3A e
J3AVI3A ANV ASION 38 OL NOISSIWSNVYHL 1203dX3 e

SHIL3IWVHVd TINNVHI IHL 3ZIH31OVHVHI ANV FHNSVIWN e

(TTIHSLNN V NI AYOIHL NOILVIINNWWO)D) 1
STINNVHD ASION HLIM ONIJOD cir

R. Tausworthe

JPL
30 of 41

88-0¢- 11
=10

S30NAO0Yd L1 SL1TNS3IH FHL 40 ALITVNO ANV ALILNVYNOD
JHL1 ANV 33NA0Hd 3IM NOILVINHO4NI FHL SI H04 AiIVd 139 IM LVHM e

S1H4Vd d3SN3YH 40 «| ANV «1 WOH4 SLTNS3Y « A @T31A NOILONNS LONAOHd e

NOILVINHO4NI SINIIWIHINDIY LONAOYHd OL LON 'ADHINI ISION ANV
NOILVIWHO4SNVH1 OL S3LNGIYLNOI TINNVHI IHL NI 3ONIDITIILNI NVANH e

(DNIAHISIHI"NOILYIWHOINI SI NOILVIWHOASNVHL IHL “91)
INILNOD NOILVYWHO4NI NOILVYII4103dS LINA0Hd (LD3HHO0D) 3HL OL
ANITVAINDI SI SINJWIHINO3Y JHL 40 LN3JLNOD NOILVINHOINI e

SINIWNIHIND3IY ISOHL
ONIALSILYS 10NA0Hd V OL SINFWIHINDIYH LNdNI 40 DNIddVIN ¥ S1SIX3 IHIHL e

‘SWOIXY

=]

4IANISWO)D NOILY Ny SIN3IW

m Wmnu 12Nnaodd

TANNVHI NOILVLNINITdINI

I1dWVX3 SNDO04 -y

R. Tausworthe

JPL
31 of 41

88-0¢c-11

87103 | (NOW3Q S, TTIMXVIN ON) Q3aLInId
T||59 4O GIWHO4SNVH L >,_mmm§|||v,.yw__,n_v_u_\mm”ou
_ a31v3HD LON NOILYWHOLNI ANNVHO
| | _
A1 A e—
—— viva ‘_I. viva I NOILVWHOANI
GTHOM " NOILVWOLNY | 3ovadIINi | NVINH
_ _
_
. JOVINVAQY \ o
IV OINVHIIW :
4 1
Nmfoz
v
mho%_,m% Hd $378VSN3Y ‘I9A3 TMONM
NIVWOQ ‘SIHVd 'STVIHILVIN
NOI1LVYIIddY MY Y ONILSIX3 .
NSO S—BjX
\\ A w.
ALIDVdVD TANNVHD NVWNH cr

-S1IWIT TVOISAHd

R. Tausworthe

JPL

32 of 41

88-0€-11
6-12Y

19NAoyd

NOILVINHO4NI
H3IH1O0 ANV
INIWIOVNVIN

P _ SINIW
HOLVYHO90HHOD |~ HINIGWOD | HIWHO4SNVHL ~3dIN03Y
*A : , : 11 \Lonaoyd

NOILVINHO4NI
ONI14QOod
10NAoydd

SNOILVvJI4133dS
NOIS3a 3SION
10NAaodd

NOILVINHO4 NI
NOILVHO31NI

TANNVHD NOILVINIWI1dWI JFHL cdlr

R. Tausworthe

JPL
33 of 41

88-0€-11
0l-12d

(3Svd $3719vSN3Y JHL A9 A311ddNS) NI 0D NVHL 1IN0 IW0I AVIN
S119 v1vd IHOW 0OS ‘@131A LONAOYC NI SI IDVLNVAQY TVIINVHIIN e

_ ($$31SS01 S|
ONIGTING 41) LINAOYd IHL NI TNO IWO0I SV NI 09 S118 NOILVINH O NI
40 LNNOWY JWVS JHL 1N9 ‘INO-OL-ANVIN 39 AVIN DNIddVIN ®
¥3141LNIAI LINAOYHd INDINN « LINAOHd < NOILVIWHO4NI LNdNI
ONIddVW V S1SIX3 SNHL JHIHL

ATd3dOdd W3HL 31VHOILNI e
HOV3 40SLNdLNO ANV SLNdNI Ad1D3dS e
$3719vSN3Yd 10313S e
10NA0Yd IHL A4133dS O1 IN3IDJI44NS 39 LSNIA NOILVIWNHOINI LNdNI e

43alng
12NA0Yd 12NAaoyd NOILVIWHO4NI
Iv3al 1NdNI
. jsvd
$319vsSN3y

JOVINVAQY TVIINVHIIW JHL ONISYIIONI cll”

R. Tausworthe

JPL
34 of 41

88-0¢-11
L1=-1D¥

S3ISVYIHONI ALIAILONAOYHd FHL ‘NOILVWOLNV A8 A317ddNS 3HV ISIHL 4| o

INIONI NDISIA IHL A8 A3SN NOILVINHO4INI
TVNOILVINHO4SNVHL LN3ISIHdIH SLNdNI DOTVLVI ANV 3SVE 3DA3TMONX e

A3IWHO4SNVHL St LNg (SLNIWIHINDIY LSOT ON ONIWNSSY)
JWVS JHL 34V AHOLIV4 ANV INIONI NOIS3IA OLNI NOILVINHOINI 40 LNNOWY e

SW31904d
a3nios
40 901V1vI

Slyvd
3ngvsn3iy
40 AHOLN3ANI

bt O R R
SNOILIONYHLISNI

JAILVHOILNI
HOLVYH anv INION3 NOILYW
12naoyd -0904H09 {1 swaisoudans NDISId -HO4 NI
+Al /g43Nnigwod | * a3inlos 12NnAaoyd
OL1NI

NMOOMVY3IHAY
N+ 214+ Pg

VIH31I4I ALITVNO
S37NY NOIS3A
S3TNY IINIHI4ANI

‘39A3TMONMX NIVNOQ

13AOW 1INNVHD ¥3a1iNg-10Naoyd IH1L dallr

R. Tausworthe

JPL

35 of 41

88-0€-11
¢l-1Dd

| ANV ‘A O NI SNHL 34V d IAOHdWI OL SINNIAY IFHL

I M
—0= —=d

M
*A _

=0

‘SdIHSNOILV13H

HLNOW-MXHOM/(SLIg) AT13I1A LONAOYHd ‘ALIAILONAOYH d
HLNOW-MXHOM/SLIE ‘'31vYd TINNVHI J
Dmmjmm*_ + xl =%A

S119°'Q131A NOILONNA
S119 'L.2NA0Yd A4103dS OL G3A33N NOILVINHOLNI 1VILN3ISS3

A

*}

S118 ‘LNdNI NOILVYINHO4NI |
SHLINOW-JXHOM ‘1HO443 XHOM = M
‘SNOILINI43Qa

i

JOVINVAQY TVIINVHDOIW Al
ANV "ALIAILDNAOYUd 'ALIDVAVD 1INNVHD

R. Tausworthe

JPL
36 of 41

88-0€-11
€1-124

SWH3L IAILYTIH NI LSV3IT 1V '319VIHNSVIW JHV Y ANV 'L 0 °n ‘03 o

LIWIT 13NNVHD NVWNH V ‘AH1SNANI
3HL N1 aaxid St 99 "My S.NONNVHS A9 ALINN NVHL SS373HV £ 0 ‘M (310N e

(C+ L) y d 1 05 =
))4 -
| ASNOM /AN AN) an
|
l AH LSNANI

JHVYML40S IHL HIA0 OM 40 INTVA 1SV3I1 IvNLdIONO0D IHL 39 NIWm 137

3SN HOd 3S3IHL IHVdIHd ANV 'Sv3dl MIN IHNLdVI
‘NOILVYWHOLNI ONILSIX3 31vI017 01 d3sN 1ON M 40 1HVvd 1VH. 39 Om131 e

ALIDVdVD NOILONAOYd il

R. Tausworthe

JPL

37 of 41

88-0€-11
y1-12d

d NO ANNOS9
IHL INIWHILIA ATILVWILTN TTIM ISNTH 40 33HDIA IHL (N +1) 003 > 4

341014343y

M|

ALITEVY3ISN3IY IHL ONIYHNSYINW ‘IOVINVAQAY IDVNONVI IHL SI ..] =X ®
* *

SIHNSVIW FAILONAIYH - NOILVWHO4NI ANV

I
ONIAVS-H08V1 :a31V134d AD0T10AOHLIW ANV 1001 SI (M/Om) Aﬂ.vn 1 e

AN3AN3Id3a FONIIANY ANV ‘ITALS
‘IDVNONVT S| ANV ‘SINIWIHINDIY 40 ALINTIHIINS OL AILVIIH SI ("1/x1) = 0 o

AJON3IDI443 TVININW V SI 11
*A31V134 LNIWNOHIANT ANV ‘JONIIHIIXI ‘ALIXTTIWOD SI (Om/NIWp) = 7 o

ALIOVdVD TINNVHI NVNNH A8 @3x14 5100 e

FONVOIIINODIS il

R. Tausworthe

JPL

38 of 41

88-0€- 11
Gl-1Dd

3sv8 12NnAaoydd
ANV 3SVd 393 TMONN 40 SININOJWOD 3SN3YH

3Svg 12NA0Hd 01 Qv e
3Svd 393 TMONX 01 QQvV e
(£ Y ‘M 3ISVYIHONI) SWILSAS

G3Q33N 3SILHIdX3 40 13AIT3IAIINAY o

SNOILVH3dO INOHd-HOHHI 30V 1d3Y °

Sd31S TvNLD3113LANI ANV HO8V1 30V 1d3Y e
(£ ‘M 3SVYIHONI) SAIV ANV ST001

Q3L1INNOD SHOHHI NI NOILONA3IY e

Sd31S TVNLIO3T1TILNI ANV HOGV 1 NI NOILONA3Y o

W31904d IHL 40 .. O9NDINNHI,, LN31D01443 3HOW e

NOILNT10S S11 ANV W31804d NO SNJ04 431139 o
(£ °0 ‘M 3ISYIHONI) ADOTOAOHLIN

NOILVZIIVIO3dS °

ALIAILD3T13S 44VIS o

JON3IIYIdX3 e

ONINIVHL ANV NOILYONQ3 °
(7 3SVIHONI) STIIS

ALIAILDNAOY™d ONISVIHONI

Adlr

R. Tausworthe

JPL

39 of 41

88-0¢€-11
91-120d

z(4 907) NVHL H31SVd ISVIHONI OL 3AVIN 39 NVI S1HVYd
378V3ISN3Y 40 AT131A IDOVHIAVY FHL 41 ATNO MOHO OL INNILNOI NVI X e

(1901
900, muof.mg S
A 2901 Ag
(P+H) €907 [(P+4) DO +4] (P +1)
ElthM = X

N3HL S| IDVINVAQY IOVNONVYT IHL e

N/(N 40 3LVWILST 4d!Z)

d3sSN S3TNAOW HOLVHIdO 40 G131A IOVHIAY A

d3sSN SANVH3IdO ANV SHOLVYHIdO TvNLIV 40 HIFGWNN
d3SN SANVH3IdO V.1va 3NDINN 40 HIGWNN

d3SN SHOLVH3IdO INDINN 40 HIGWNN

AHOL1H3d3d 3SN3H IH1L 40 SHOLVH3IHO INOINN 40 HITWNN
NOILVION e

il]] I]
- - pd L

d

SANFAL FIOVINVAAY FOVNONVY1 -

R. Tausworthe

JPL

40 of 41

88-0¢€- L1
L1101

JINIT3ISVYE TVIHLSNANI HNO 3LVHEITVvI 01 d3i1ddV 389 O1 d33N
SIHNSVIW AHOIHL NOILVWHOLNI '378VHNSVIW IHV SHOLIVd JHL o

ooL > > Ol
1-0L > ¢+ > z.0L
-0t > 9 > 2.0l

ATLNIHHND LVHL 3HV SNOILd30H3d e

(3NSSI N3dO NV) H 50119071 NVHL 431SV4 3ZIS NI 3SVIHOINI
ATIVHNLYN SITNAOW 318V3ISNIH 41 SMOYD IDVLNVAQY JOVNONY'] e

IDOVINVAQY IOVNONV] e
AJN3IDI443 1001 e

AJON3IIJI443 SINJNIHINO3Y *
AJON3IIDI443 TVINIW e

ALIOVdVO NOILVIINNWWOD WILSAS/NVIANH e
G3LINIT 34V SLNIWIAOHAWI ALIAILONAOYd 3HVML40S HOd SV3IHVY e

aNNOg ALIOVdVYI NOILONAOYd V St 3H3IHL e

AAVWWNS Adlr

R. Tausworthe

JPL

41 of 41

KNOWLEDGE-BASED ASSISTANCE IN COSTING THE SPACE STATION
DMS -

N91-10611

Troy Henson and Kyle Rone

IBM Corporation /vag
3700 Bay Area Blvd
Houston, TX 77058

17 Te
il

ABSTRACT

The Software Cost Engineering (SCE) methodology developed over the last
two decades at IBM Systems Integration Division (SID) in Houston is uti-
lized to cost the NASA Space Station Data Management System (DMS). An
ongoing project to capture this methodology, which is built on a founda-
tion of experiences and "lessons learned", has resulted in the development
of an internal-use-only, PC-based prototype that integrates algorithmic
tools with knowledge-based decision support assistants. This prototype
SCEAT (Software Cost Engineering Automation Tool) is being employed to
assist in the DMS costing exercises. At the same time, DMS costing serves
as a forcing function and provides a platform for the continuing, itera-
tive development, calibration, and validation and verification of SCEAT.
The data that forms the cost engineering database is derived from more
than 15 years of development of NASA Space Shuttle software, ranging from
low criticality, low complexity support tools to highly complex and highly
critical onboard software.

INTRODUCTION

Software cost engineering (SCE) is the systematic approach to the esti-
mation, measurement, and control of software costs on a project. This
discipline provides the vital 1link between the concepts of economic
analysis and the methodology of software engineering. The tasks involved
in software cost engineering are complex, and individuals with the know-
ledge and skill required are scarce (1). The accuracy and consistency
of the SCE results are often questionable (2). There is a definite need
for tools to enable SCE by managers and planners who are not experts and
to improve the results (3).

PROBLEM DESCRIPTION

Software costing is required for the Space Station Data Management System,
as in other projects, in many situations. Often the costing is needed
within a limited time frame for a proposal, to build a business case, or
to evaluate a project that is in trouble or potentially may have a problem
meeting cost and schedule constraints if not adjusted. Quansitative es-

T. Henson
IBM
1 of 19

timates are required; however, little solid information may be available.
A detailed analysis of the software requirements may take weeks if not
months. Also, there may be a geniuine concern about how well the software
requirements are defined and how stable are those requirements.

To further complicate the situation the estimation process itself carries
some inherent risks. Some of the factors that increase risk are software
size, complexity and criticality.

Software size, particularly in a system such as the Space Station DMS,
is an important factor that can ultimately affect the accuracy of the cost
estimate. As the project size increases the interdependency among various
elements of the software increases. Problem decomposition, an important
step in the costing process, becomes more difficult.

Complexity, i.e., the relative difficulty of the software application,
is an important factor affecting development costs. Some types of soft-
ware are inherently more difficult to develop than others, e.g., devel-
opment of an operating system compared to the development of utility
software. The type of software function, such as real-time, input/output,
batch, or computational, and the level of difficulty of the requirements
also significantly influence software complexity.

The criticality of the software directly affects the cost of validation
and verification as well as indirect costs. Software for certain medical
diagnosis or treatment systems, for air traffic control, or for the Space
Shuttle Flight Control System must not fail or human lifes will be lost.
In contrast, an inventory control system should not fail, but the impact
of the failure would not result in the loss of human life.

Viable software costing depends on a quantitative historical database.
If no historical data exists, the cost estimation rests on a very shaky
foundation. For Space Station DMS, as for other IBM SID Houston projects,
the cost engineering database is based on more than 15 years of develop-
ment of NASA Space Shuttle software, ranging from low criticality, low
complexity support tools to highly complex and highly critical onboard
software (4), (5).

KNOWLEDGE-BASED SCE AUTOMATION -- SCEAT DEVELOPMENT

Currently at IBM SID in Houston, software cost engineering tasks are
performed by a domain expert using his/her experience and data compiled
from previous efforts. For a software costing exercise, the domain expert
may use stored data and algorithmic/model-based, costing programs; but a
significant part of the process is based on non-automated expertise.
Software costing expertise is needed in many situations, and the costing
is often needed within a limited time frame. Yet, individuals with the
knowledge and skill to conduct a software costing exercise are scarce.
The knowledge-based decision support assistants in SCEAT identify and
preserve the domain experts' knowledge, assist managers and planners who
are not costing experts, and improve the accuracy and consistency of the
cost estimation results.

T. Henson
IBM
2 of 19

As part of the knowledge acquisition process, the first draft of a soft-
ware cost engineering workbook has been written and utilized as high-level
requirements for SCEAT. The overall SCE process was analyzed from a
modular/structural/dependencies viewpoint. Included is the relationship
of SCE methodologies to other parts of software/systems engineering
process control, at one end of the spectrum, and the decomposition of SCE
into component tasks and the identification of the SCE foundation or
central core, at the other end of the spectrum (See Figures 1 and 2).
Then a concise approach to software cost estimation, which covers the
total costs -- direct and indirect -- over the complete life cycle, using
existing methodologies and tools and quantification of the primary domain
expert's knowledge (6), (7) was defined. The experience-based tasks in
the SCE process were identified, and the functional design of SCEAT in-
cludes expert systems to assist in those tasks. The core development cost
estimation methodology was defined in the SCE workbook in more detail and
implemented in the initial SCEAT prototype, which includes prototypes of
expert systems for assistance in determining software criticality and
software complexity.

The SCEAT prototype integrates, under Professional Work Manager (PWM) and
EZ-VU on a PC, algorithmic SCE tools with expert systems for decision
support assistance. SCEAT integrates the decision support assistant ex-
pert systems for software criticality and complexity determination and
"stubs'" for four additional planned expert systems with nine algorithmic
tools including the Matrix Method tool implemented in Lotus 1-2-3. The
user interface is via panels offering cook book steps to proceed through
the SCE task, selectable information and tools, help screens, and pop-up
screens.

COSTING THE SPACE STATION DMS UTILIZING SCEAT

The SCEAT prototype has been utilized to assist in the costing of the
Space Station Data Management System (DMS), a complex software system
involving a distributed environment with multiple languages and applica-
tions (8), (9). The DMS for Space Station is also affected by the re-
quirements for long lifetime, permanent operations, remote integration,
and phased technology insertion of productivity tools, applications, ex-
pert systems, etc. Major cost drivers include the large size and diver-
sity of the software, complexity, development support environment,
off-the-shelf and reusable software, and criticality, which varies from
one module to another. An example of the type of results -- at the end
of the intermediate step of development cost estimation -- obtained with
SCEAT for the DMS costing is included in the presentation.

SUMMARY/CONCLUSIONS

The software cost engineering methodology employed by the domain experts
at IBM SID Houston has been captured and integrated into a prototype tool
SCEAT (Software Cost Engineering Automation Tool). This PC-based tool
integrates algorithmic tools with expert systems which serve as decision
support assistants.

T. Henson
IBM
3 of 19

SCEAT has been employed to assist in the costing of the Space Station DMS
(Data Management System). It is providing a standardized approach for
the DMS costing, which involves several individuals. It has made the
costing process more efficient and has relieved the demands on the prin-
cipal domain expert's time, allowing him to move forward into other areas
of software/systems engineering process control improvement. The auto-
mation and captured methodology domain knowledge has established the
foundation and mechanism enabling the continuing calibration and im-
provement in accuracy and consistency for Space Station DMS costing.

Plans for the future include developing additional knowledge-based deci-
sion support assistants and a tutorial to accompany the next version of
SCEAT. The approach is also being expanded to other areas of
software/systems engineering process control, starting with quality es-
timation, scheduling and management, and eventually extending to manage-
ment of performance, product, resources, risk, planning, schedule. (See
Figure 1). This is a continuation of the effort to accomplish the long
range objective which is to automate, including the development and
utilization of knowledge-based systems to serve as decision support as-
sistants, software and systems engineering process control. Results will
continue to be applied to assist in the costing and management of the
Space Station Data Management System (DMS).

REFERENCES

1. DeMarco, T., Controlling Software Projects, Yourdon, New York, 1982.

2. Kemerer, C. F.. "An Empirical Validation of Software Cost Estimation
Models," COMMUNICATIONS of the ACM, Vol. 30, No. 5, May 1987, pp
416-429,

3. Boehm, B. W., "Improving Software Productivity,'" COMPUTER, Vol. 20,
No. 9, September 1987, pp 43-57.

4. Madden, W. A. and K. Y. Rone, '"Design, Development, Integration:
Space Shuttle Primary Flight Software System,'" COMMUNICATIONS of the
ACM, Vol. 27, No. 9, September 1984, pp 914-925.

5. Spector, A. and D. Gifford, "The Space Shuttle Primary Computer Sys-
tem," COMMUNICATIONS of the ACM, Vol. 27, No. 9, pp 874-901.

6. Rone, K. Y., "A Cost Engineering Overview,' class notes and handouts,
March 29-30, 1988, IBM SID, Houston, Texas.
7. Rone, K. Y., "Software Engineering Process Control," copy of presen-

tation, IBM FSD, Houston, Texas, 59 pages.

8. Chevers, E., "Avionic Systems Test Beds for Space Station," Plenary
Presentation at the JAIPCC (Joint Applications in Instrumentation,
Process, and Computer Control), sponsored by the IEEE, ISA, and the
University of Houston - Clear Lake (UH-CL), March 12, 1987, UH-CL,
Houston, Texas.

9. Heer, E. and H. Lum, "Raising the AIQ of the Space Station," Aerospace
America, January 1987, pp 16-17.

T. Henson
IBM
4 of 19

THE VIEWGRAPH MATERIALS
FOR THE

T. HENSON PRESENTATION FOLLOW

$8-82-11 (1S¥U)LY 41d°CO8UIHAL

juawabeuel

12npo.dd

juawabeuel

Uo!jew!1s3 }S0) 313K 3417

juawabeuey
31npayss
jruswabeueyy
$s03
co_mme_wmm Buseyq
abuey) .
21363 3117 31343 3411
uoijeanbijuoday
-0 = 0L¢ L RS, mw
2 ol e 2 5= |3
3 > =] Ly 27
= m UOIIEWELS 3 D3 2
n 3 RIS, 5 &5
© [Sjuswdojz ° ~ |
Bu1seyd

juawabeueyy
33UPW10 L1138

juswabeuel
A}11eng

FANLINALS T0dUINCD SS320dd
ONTJFINIONT SWILSAS/JABMLAH0S

T. Henson
IBM

PRPERS S
S QUALITY

R

‘T RNOI4

7 of 19

PAGE E INTENTIONALLY BLANK

¥ FILMED

NOILLVWILSS
1S00
JININSOTSASA

IAD 34N

3

ONIH3I3INIONT 1S02 3IHvVMLI0S

T. Henson

"¢ N9I4

=
=

8 of 19

dOHSYHOM ONIYIINIONT JUVYMLIO0S TVNNNY HLEL

9/v2-282 (€12) ANOHd
661L1-860/. X1 ‘UVISNOH
‘PA|g ealy Aed 00.€
uonetodiod gl

auoy ajAy] pue uosuaH Aoij

INILSAS LINJNIOVNVIN V1ivd
NOILV1S 3IVdS
94} ONILSOD ul
JONVLSISSV AdaSva-1O03TMONM

T. Henson

IBM

9 of 19

dOHSYHOM ONIYIINIONT FUVMLA0S TVNNNY HLEL

NOILVINI LSS

UDJ2ELNST <

1500

$403084 MIX3|CWs)

FIvMLH0S

5103324 M 133npoH

TN

35vgv.Llvd
WJIHOLSIH

¢ We[odd =Yl S| Jeym

T. Henson

IBM

ANNOYUOMOVE

10 of 19

dOHSHYOM ONIHIINIONI JHVYMLI0S TVANNVY HLEL

|00} jo43u0d ssadoud e ojul 1 y3DS puedxy

leuon} 1 v3os e dojansq
1¥3OS 40} sjuejsisse poddns uoisiosp jeuonippe dojaaaq

SNV1d 3™NLNd

(Lv3DS) 001 uonewolny 3DS ojul swayshs padxa pue sj00} pajeibajul
yooqguom 3HS padojaneqg

swalsAs padxa Apxajdwos pue Ajjeanud padojaasq

|00} pOoYyidN xujeN SNLOT padojaneqg

§]00} Dd diwypuobje ¢ padojarag

$9s4n02 JHS padojanaq

SNLV1S LNIWAND

$9s8IN02 DS apinoid

308 9jewoiny

ssa%04d 3OS aula(

S3AILOIrg0

(30s) Bunsauibud }s00 aiem)jos ajewone pue azipiepuels

NOILdIYOS3Ad ALIAILDV

T. Henson

IBM

4

NOILVINOLNV 3OS A3asva-3Oa3TMONM

11 of 19

dOHSHYOM ONIYIINIONI JYVMLI0S TVNNNY HLEL

ABojouyoa] aseg eleq o
Swa)sAg padxy .

fgesnay .
S10D o
epy °

(sjo0] AjAnonpold) uonewony e
uoipasu] Abojouydsa] paseyd

Ajjeonii) jo sjpaa ajdyiny
wajsAg 3s0)-03-ubisag
JuswiuodiAug pajnquysiq
uoljelbaju] sjoway

suonesadQ jJusuewsad

® & 6 & 6 ¢ o

8y buoT

T. Henson

IBM

SUIARIA SNA NOILVLS FDVdS

12 of 19

dOHSYYOM DONIY3IINIONT JHVMLIO0S TVANNY HLEL

T. Henson
IBM

Meopud .
Aq uaALIg S)SO) Joadipul ¢

Mjjeonud .
9SNdYy/S10D0
(siool 3SS jo Ajlliqejieny) asea|ay e
Aixajdwiod
abenbue] .
Aq uaaug uonesyud\ juspuadapu]

9SNdyY/S10D -
(sjooL 3SS jo Ajjiqejieny) asesjay
Aixaldwo)
abenbue] .
Aq uaaug sjeaa Aiaonpolad ¢

SY3AIREA 1S0O SING

13 of 19

dOHSHYOM ONIYIINIONT JHVYML40S TVNNNVY HLEL

SLUAUON Ul 23BindE)

[}
L)
Q
Q)

J073084 333JipU|
J01224 UOIIBIIIBA
Jd010e4 R3IA1zoNDOL

i BN

[
L)
as aj
a; ‘u)
Uy uy
1

-

D0
n U 9
0

<<

'

SSSESisH 0] SUCIZIUNS
[3rsT) Raixsidwon) ubissy -
isAs Mueony ubissy -

SJ07S Ul 8ZIS Slewsy -
uoldUNS U3E3 o4

us* '} sucizaun4
L
. L

uol3ea14103dg
SjusWaJinbay

T. Henson

IBM

UO[JBWI)ST 3507 JuawdojaAs a8Jemijog

ADOTOAOHLIIN ONILSOD

14 of 19

dOHSYHOM ONIY3IINIONI FHYVMLI0S TVNNNY HLEL

T. Henson

IBM

suonsand juabijeu] Jo wao4 ay} ui painjyde) abpajmouy

4

Buiey Aixajdwol) asemyos ayj aulwia)ag o} pajejol ale sanjep

4

anje\ |eduawnN e paubissy pue palapisuo) Jojoed yoey ¢

abuey Jybiop\ jeouBwNN e paubissy Jojoed yoeg o

uoneIYISSE|D BIBMYOS o
sjuswalinbal ajeuadju] e
SJUIBIJSUOD |BOIJID) o

si0)oe4 994yl uo paseg Auxadwo) aiemyos e

S3 LNV.LSISSY NOILVNINYILIA ALIX3TdNOD FUVMLI0S

15 of 19

dOHSYYOM ONIYIINIONT JUVYMLA0S TVNNNY HLEL

suonsand juabijivyu] jo wio4 ay} ui painyder) abpajmouyy

Buney Ajjeonu) aiemyog ayj aulwialaq 0} pajejol ade sanjep

anjeA |esuawNN e paubissy pue paJapisuo)) Jojoed yoeg

abuey Jybiop\ [esdwnN e paubissy J0joeq yoeqg

sjuawalinba.i dnyoeq aitemyos
sjuawaldinbal uonqusip alemyos
saAljoalqo jeuojesado jo uonsjdwo)

pajel-uewin

s10joe4 Un04 uo paseg Ajjeoanu) atemyos

4

T. Henson
IBM
16 of 19

S3 LNVLSISSVY NOILVNINY3LIA ALITVIILIYD FHVYMLH0S

dOHSHYOM ONIHIINIONT FIYVML40S TVNNNV HLEL

Sd3sn

T. Henson

IBM

]

W3LSAS wzHH¢mmaogmeo

JOUJNIINI WHAS0Nd NOILIYIIddy 39BNSNBT T3AIT-HOIH
43OUNUW Ad0M TUNOISSIH0ad
ALITIJEd 3WILNNY NA-Z3
1001
¢-2-1 Snio "3SHd S3 onI W8I
SWALSAS
1d3dX3
0oL LINULSISSY
QoHL3IW S001 140ddnsS
WINIGW || DIWHLI¥O9TW || NOISIO3C

JANLIFLTHIdE8 18335

FUNLOILIHOYV 1V3IOS

17 of 19

dOHSHYOM ONIYIINIONI JHVYMLI0S TVNANNY HLEL

€4 B v~ Cd4 N M

5705 5755
£°69 |G 4
8L AN A
87301 §0¥
9°EL 0°82
Z7161 A
1°¢91 9708
1Y by
9012 £
0"B¥S 27291
1J34IANT "JI43A

@ r
Ll
L
e 23
s O
el -
D)
S
3 e
£°88¢ QOL0TE ODECTT ISTHLQL]
01z 1 1 L 000007 aseg £1e(ualay
9e1z1 £zt 138 T yaY 000022 0008 53314435 J3s()
grer g NOTHD ey 0095 K0
oL £t W W ¥OY 00005 00922 SWad
0°GI1 MJNJﬁ TWIW TH'D gaY 0000 WS SHQ
pr8L £°Z°T WPOR'I5 NoHIY 00542 53214485 *brjuoiay
601 £ H 1 Yoy 000¥ S311AJ3G PJBPUE]S
b LL 1 25 3 HQY 0060F 0097 SO1Y
67207 £°7°1 15 T 00965 SON
A3 134 143 'dKO0D "INYT 510D B3N CERL
TYYHD AHUKNNS
£ o
S -
.HMf.O
A%

S11NS3Y ILVIA3INYILNI 40 3dAL 40 F1dINVYX3

dOHSHYOM ONIUIINIONT JHUVYMLA0S TVNANNVY HLEL

T. Henson

IBM

"[043U0D)
$S920.4d Buaauibug swie)sAg/aiemyjos Jo seade 1ayjo oyul papuedxa aq [IIM

4

Juswanoadwi pue uoneidqiied Buinuiuod Buljgeus uoepunoq

ajeuones painyde) o

Aoud)sisuod pue Aoeindde ‘Aouadiys panosdw) o

yoeoidde pazipiepues o

"woajsAg Juswabeuepy ejeq uolje}s asedg ayj Buiysod ul paziiph usaq sey Ly3ds ¢

sjuejsisse poddns

UuoISIoap sk aAIas YdIym swidjsAs padxa ypum sjoo} siwyjuoble sajelbaju] o

paseq-0d e

'1v3DS |00} adAjojoud
e ul pajelbajul pue pasnjded usaq sey Abojopoyjaw bBuLidauibug }so) alemyos ¢

AYVININNS

19 of 19

N91-10612

/::’\‘7 ;r:
U

~

30 November 1588

ware Sizin Estimation an h lin
William G. Cheadle ;
Martin Marietta Astronautics Group ' /»/ |
Mail Number L0330 M' =
Post Office Box 179

Denver, Colorado 80201

INTRODUCTION

The Technology Implementation and Support Section at Martin Marietta
Astronautics Group Denver is tasked with software development analysis,
data collection, software productivity improvement and developing and
applying various computerized software tools and models. The
computerized tools are parametric models that reflect actuals taken from
our large data base of completed software development projects. Martin
Marietta's data base consists of over 300 completed projects and hundreds
of cost estimating relationships (CERs) that are used in sizing, costing,
scheduling and productivity improvement equations, studies, models and
computerized tools.

BACKGROUND

Martin Marietta resolved in 1975 to establish a study effort to investigate
the software development process and the understanding of how to plan,
schedule, size, and estimate software. The outcome of this analysis was
that management decided to develop a company-peculiar parametric
software estimating cost, schedule, and manloading model. This
parametric model was generated by using actual software development
data collected over a number of years. Cost estimating relationships
(CERs) were created, project and mix complexity factors were established,
and independent variables were quantified. The result was data
base-derived software estimating equations for assembly and high-order
language software. These equations and our resulting software parametric
models have been validated by comparing project sizing, labor actuals, and
schedules with PCEM outputs and documenting the results.

W. Cheadle
Martin Marietta
1 of 29

/’ 7)(/ L/)
-

DEVELOPMENT APPROACH

During the early years of our data collection, analysis and model
requirements generation activities it was decided that Martin Marietta's
software parametric models would include the whole software

development life cycle from systems requirements through systems test
and provide budget and schedule outputs for the four software development
organizations that contribute most to software development. These are:

Systems Engineering,
Software Engineering,
Test Engineering, and
Quality.

Our data base collection approach consists of breaking software actuals
out by class, type and language.

Classes of software include:

Manned flight
Unmanned flight
Avionics
Shipboard/Submarine
Ground

Commercial

Types of software are:
Systems Software: Operating systems and executives.

Support Software: Simulation, emulation, math models and
diagnostic software

Applications Software: Software that solves the customer's problems.

W. Cheadle
Martin Marietta
2 of 29

We collected sizing data by programming language. Our software sizing

data base library consists of over 5 million Martin Marietta (Denver)

developed source lines of code and over 4 million source lines of code
developed by other software development companies and organizations.

At Martin Marietta Denver, we are presently gathering detailed sizing

information at the function level to provide additional inputs into our

computerized sizing model.

An example of this detailed data is a program of 13,830 SLOC (less

comments), of which 9,678 (70%) was programmed in FORTRAN IV and
4,152 SLOC was programmed in assembly language. There were also 1,434
data statements. The sizing summary by computer program component

(CPC) consists of the following:

Function Name

a) Ex ive/ ratin m

System Control

Interrupt Handling
Interprocessor communcations
Initialization

b) Qperator Interface

Menu display and automatic generation
Operator prompting and error checking
Tabular displays

Graphic displays

CRT Formatter

Data
Total State-

Assy HOL SLOC ments

102
655
75
13

OO0 0o

275
64
139
35

1,003
899
485

34
22

377 5
719 1
214 0
48 1
1,003 8
899 4
485 51
34 0
22 0
W. Cheadle

Martin Marietta
3 of 29

c) Data Base Manipulation

Data base generation/regeneration

File management
Data storage and retrieval

&) Di ics. Fault O it

Sensor diagnostics
Memory diagnostics
CPU diagnostics

e) Hardware Interface

Peripherals
Sensor Device

Format manipulation and information

conversion

0 232 323 0

203 94 297 1,116

0 248 248 9

104 3,312 3,416 144
396 1,610 2,006 60
2,510 381 2,891 20
54 0 54 0

40 595 635 15
0 159 159 0
4,152 9,678 13,830 1,434

The "interrupt handling” CPC function level breakout reflected these sizing

numbers:

Function Name

Real time interrupt handler (l)
Enable/Disable subroutine
Real time interrupt handler (lI)
Keyboard interrupt handler
Keyboard handler subroutine
Put character

Disable interrupts routine
Enable interrupts routine

W. Cheadle
Martin Marietta
4 of 29

Assy HOL

52
5
10
53
0
0
8
10

50
14

Data
Total State-

SLOC ments

52
5
10
53
50 1
14
8
10

MS Interrupt handler 79 79

MSS Interrupt handler 63 63
Real time interrupt handler 81 81
STAR PIP interrupt handler 67 67
ATOD data ready interrupt handler 51 51
Deuce/STAR threshold data ready
interrupt handler 80 80
655 64 719 1

The above detailed sizing data along with the cost and schedule information
by project provides the input for our detailed analysis and productivity
improvement activities.

PARAMETRIC MODELS

The six models described in this paper are all PC-hosted models and trained
users carry disks from job site to job site using available compatible PC
computers located at the project facilities. These models provide a
management capability that has not been available in the past, and there
are no subscription costs or mainframe computer delays using these
models.

1) Sof p c Cost Estimating Model (PCEM)

This model provides a method for estimating the total budget, schedule
and manloading for a software development activity. The model addresses
all phases of software development from systems requirements through
systems test. There are two versions of the PCEM model. Version 3.1
reflects MIL-STD-490/483/1679/1521A development. Version 4.0 reflects
DOD-STD-2167 and Ada software development.

W. Cheadle
Martin Marietta
5 of 29

Description of the P i Model

The data based utilized in the Software Parametric Cost Estimating
Model (PCEM) consists of "in-house" and "outside" historical software
development actuals collected from over 300 completed software
development projects.

The data based software projects were separated by "class" and "type"
of software. Each class and type has a different complexity and different
cost estimating relationships (CERs).

Class of Software

1) Manned space 4) Shipboard and submarine
2) Unmanned space 5) Ground

3) Avionics 6) Commercial
Type of Software

1) Systems Software
2) Applications Software
3) Support Software

Independent Variables

Several independent variables were investigated and the four which
were selected and incorporated into the model are summarized below:

1. Lines of Code - The PCEM accepts either source lines of code or
machine instructions (object instructions). The amount of functional
decomposition performed prior to arriving at a sizing estimate is very
important. A great deal of time and analysis is put into reviewing the
decomposition so that a good determination of sizing accuracy can be
resolved before we input sizing numbers into the PCEM.

W. Cheadle
Martin Marietta
6 of 29

N —

JeuseLho

1)
2)
3)
4)

Project Complexity - Project complexity consists of 14 factors which
reflect how well the customer problem is understood and how prepared

the contractor is to respond to solving his problem. The factors are
weighted and all 14 must be addressed.

Requirements Definition 8) Man Interaction
Documentation Requirements 9) Development Environment
Experience of Personnel 10) Timing and Criticality
Experience with Equipment/System 11) New or Existing Software
Amount of Travel Required 12) Reliability of Test Hardware
Language Complexity 13) Testability of Software
Interfaces 14) Operational Hardware

Constraints

Mix Complexity - The software mix complexity is applied after
software sizing has been accomplished. A hundred percent of the
identified software lines of code are distributed across the eight mix
elements.

The eight elements of mix complexity describe fractions of the total
number of source or object instructions, identified by the software
engineer.

Mathematics 5) On-line Communcations

String Manipulation 6) Realtime Command and Control
Diagnostics, Support Software 7) Man-machine Interaction

Data Storage and Retrieval 8) Systems software

Schedule - PCEM determines the optimum schedule and establishes

dates for software milestones. The optimum schedule is defined as
that period of time when the software can be developed for the least
amount of dollars. Costs will increase if the schedule is accelerated,
or if it is stretched out beyond the optimum schedule.

With the four independent variables defined along with class and type
information, the PCEM can arrive at a total software cost and schedule
estimate.

W. Cheadle
Martin Marietta
7 of 29

Orqanizations Included in the PCEM Oulput:

The PCEM cost equations provide estimates of budget and schedule for
the following three software development organizations:

1) Systems Engineering
2) Software Engineering
3) Software Test Engineering

With the information on source or object lines of code, project
complexity, mix complexity and user-supplied schedule, the PCEM
computerized model can now arrive at the number of manmonths and the
schedule required for each of the three software development
organizations.

The equations used in the computerized model are arrived at by a
multiple regression methodology assessing and analyzing the collected data
base information.

Assembl n nd High Order Lan ER

Development Costs

Equation: Y = a(x; P1)-(xy02) - (xP3) - (x, Pa)
Where Y = Total Number of Manhours (165 hours = 1 M/M)
Xy = Estimated Number of Source Lines Code

X, = Estimated Project Complexity
Xq = Estimated Mix Complexity
X4 = Schedule

a = Constant

o
b

o
n

bs, by = exponents

W. Cheadle
Martin Marietta
8 of 29

Budget and Schedule Information is provided by PCEM for both
MIL-STD-490/483/1679/1521A and for DOD-STD-2167 Developments:

Version 3.1 (MIL-STD-490/483/1679/1521A)

SPR SRR SOR POR _ COR TRR TAR AR
REQUIREMENTS DESIGN oooe TEST

Systems | Reqts | Soltware | Prel Detail | Code | Checkout} Unit | Integration Syslerp~'

Reqts Alloc 1 Reqts Design | Design Yest | PQT FQT | Test

Version 4.0 (DOD-STD-2167)

SPR SRR SOR SSR POR COR TRR TRR R
REQUIREMENTS DESIGN e TEST
Systems|Sys | Sofiware |Prel | Detait {Coce Unit | CC csal System)
Concept | S/W | Reqts Design| Design Test | tnformal| Formal | Integration
Reqls | Anat Test Tesl Tesl
Anal

The computerized PCEM model provides a labor estimate in manmonths,
broken out by the phases and subphases of software development. The
model identifies an optimum schedule and provides manloading information
for each calendar month required for software development. The manmonth
estimates are divided between the three organizations that have software
development responsibility.

Example Version 3.1:

CALENDAR MONTHS
t 213]¢]s]se}7}ise}fo9o jro]rt)i2
spalsrr|sOR| POR | COR TRA|TRA AR
| Beq1s, 329
l-
Desion 30
|
|
I
225 FOT |
Sys Test
2.0

Sys€Engr 30l30f30]tsjriols|s]s].s]s]s]|.s |1s.0wM
SW Engr | 2.613.5l45]7.018.5h0.0{9.518.0]6.5[4.5}3.0{2.5 |70.0 MM

Test Engr Ss].5 sl s] .si.s [ro}l1.512.0l3.0(3.5]|3.0|17.0 WM

Total 6 7 8 9 10 11{11¢ 10 9 8 7 6 102.0 M/M

W. Cheadle
Martin Marietta
9 of 29

2. inten

The computerized "In Scope” maintenance model was recently
validated, and became a Parametric Cost Estimating Model (PCEM) output
during the first quarter of 1988. The parametric maintenance model is an
historical data based derived tool designed to assist users in estimating
the cost of "In Scope" maintenance efforts over a few calendar months or
over several years. The software maintenance model output includes those
efforts related to maintaining the baseline software configuration through
error correction and fine tuning activities.

3. Performance Measurement Model

This state-of-the-art software development performance
measurement tool was developed during 1988, and permits independent
assessment of on-going software development project performance. The
user establishes a performance structure which consists of a list of
documentation, design reviews, and milestones that the model is going to
use to track software development performance. The model provides a
measurement of the performance level based on actuals with respect to
budget and schedule and estimates a set of "to complete” budget numbers
and calendar months for the identified project. During the course of the
development the model identifies where the project is performing at either
above or below a 100 percent capability.

4. Sizing Model

The software sizing model is a standalone model which is presently
undergoing verification and validation testing, but in the very near future it
will become a parametric cost estimating model (PCEM) output. The sizing
model provides software development engineers with a new concept
computerized functionality software sizing capability. The model gives the
user a tool to create software development functional decompositions.
Once the decomposition is established, the model helps the user create
lower level functional decompositions based on whether the software
functional element represents a processing task, an input task, or an output
task. Software functionality menus containing generic lists allow the user
to indicate functional elements that are components of the software

W. Cheadle
Martin Marietta
10 of 29

systems to be developed. As the user identifies software elements,
FORTRAN source lines of code estimates are provided by the sizing model.
The model also includes an estimating algorithm for data statements

sizing.

5. Risk Analysis Simulation Tool (RAST)

RAST is an interactive computer-based application model that
provides a technique for performing quantitative software risk assessment.
A major feature of the RAST model is the ability to apply statistics to
assess cost risk of proposals and on-going projects. The RAST provides the
capability to add, subtract, multiply, and divide Monte Carlo derived
distributions and constants.

6 Sof Arch Siz | Esfimating Tool (SASET

This is a new computerized software cost estimating, scheduling and
functional sizing model developed for the naval Center for Cost Analysis in
Washington, D.C. The SASET model is a forward-chainging rule-based
expert system utilizing a hierarchically structured knowledge data base to
provide sizing values, optimal development schedules and various
associated manloading outputs depending on complexity and other factors.
the model is divided in four separate tiers: Tier |, Project Emulation; Tier
I, Sizing; Tier Ili, Complexity; and Tier IV, Maintenance. The model has
recently gone through verification and validation testing and the Air Force,
along with the Navy, has just recently (September 1988) provided
additional dollars to add a calibration enhancement.

ADA

Martin Marietta Denver has been actively involved with the Ada
language since its inception. We particpated in the public evaluation of the
Red, Blue, Yellow and Green languages before the Green language was
selected as Ada in 1979. Over 200 employees have attended our in-house
software engineering Ada training course, and over 200,000 SLOC in Ada
have been generated by Martin Marietta students and by engineers on
projects using the Ada language. In 1981 Martin purchased the NYU Ada/Ed
interpreter for the VAX computer and the demand for a higher performance

W. Cheadle
Martin Marietta
11 of 29

implementation led to the purchase of a Telesoft/Ada compiler for the
VAX/VMS in 1983. Martin Marietta also purchased a validated Rolm Ada
Compiler and a Data General Eclipse MV 8000 Il computer in 1983. c3i
software developed for a large system started in July 1984 and required
rehosting Ada software from the Data General onto a VAX 11/780 computer.
During 1987 and 1988 Martin Marietta Denver has won three large command
and control projects requiring the use of Ada as the software development
language.

CONCLUSIONS

Martin Marietta has one of the largest software development data bases in
the country and has been involved in software development data collection,
analysis and model building since 1975. Our analysis experts have
conducted costing, sizing, scheduling and development management studies
on the Ada language for the past several years and have provided new
parametric models for Ada management costing and scheduling. Our models
and techniques are project tested and geared to providing top management
with the tools and resources needed for accurately sizing, costing and
scheduling Ada projects and for doing performance measurement on these
same projects as they move through the software development process.

W. Cheadle
Martin Marietta
12 of 29

THE VIEWGRAPH MATERIALS
FOR THE

W. CHEADLE PRESENTATION FOLLOW

FRabLa sl

.
A

T AR L
LX IR AN

NI LY A

Martin Marietta

15 of 29

ORWIINAL PAGE IS
W. Cheadle

OF PCGOR QUALITY

10208 OAQYHOT10D ‘H3IAN3Q
6.1 .X08 ‘O'd

0€€07 H3IGWNN TIVN
NOISIAIG H3AN3Q

dNOHD SOILNVNOULSY VLIIIHVIN NILUVYN
37QVIHO "M :AS 031N3S3Hd

gNITNGIHIS GNY 9NIZIS ‘ONILUWILSI ‘INIWIIUNUW IHUMLIO0S

AMGE_ | ﬂ INTENTIONALLY BLANK

£D
a
L)

T FiLM

PO NS PR GERAYS
Lomdhifin N

PR

Al

CLlinG

T
e

(LASYS)
1001 9NILYHILST ONY 9NIZIS JANLIILIHIYY JUYYMLI0S »

(LSYY) T00L NOILYTINWIS SISATYNY JASIY o

T30OW NOILYY9ILNI 12dI3/13S0 =

1JdOH ONIZIS e

1300W LINFWFANSYIW FONYWIOH4H3d e

T300W IONVYNILNIVH =

'y NOISY3A (W33d) 13A0W ONILYWILST 1S0D JIULIWNYUYd

'€ NOISY3A (W3Jd) TIA0W ONILYWILST 1S0D JIU1IWNYUYd

ST1100W D11 13IWNVEVd dIAIYIA ISYE VIVA S.VLLIIEYVIN NILYVY I

in Marietta

W. Cheadle

Mart

16 of 29

STIAON DIH 13INVHVd =

'0071S 192°920‘G = sioeloid gz :8p0od JO SBUl| 80iN0g
"810AD 8y WwswdojaAsg JO Juddlad

quswdoaAag 8semyog ul papnjoul suoneziuebio
‘welbold yoes 10} syluowuepy juswdo|dasq
‘weibold yoes loj 9Npaydg wswdojdaag

‘Alqwesse ‘(epy) TOH :sebenbueq

‘uoddns ‘suoneoiidde ‘swaisAg :asemyos jo sadA]
‘leloJawwod ‘punolb ‘b4 :alemlyos Jo Sse|)

je10} ¢61
Wwe.ibol Yl = J ¢

sweiboid s8yio 64 snid swaloid 62 V11IIHYW NILHYW

(SWVYHDOHJ 00€ H3AO) 3SVE V.LVA HIANIA VLLIIHVIN NILHVIN

dNOYD SOILNVYNOYLSY VLILIIIHVYIN NILHVIN 34SVd V1V(d

Martin Marietta
17 of 29

W. Cheadle

'*007S 860°282'y = swaloid yz :8p0) Jo saul] 82.n0g
'910AD 817 wawdojeasq jo 1usvIad

‘Juswdojaaag 8Jemyos ul papnjou| suoneziuebiQ
‘welboid yoee Joj syuowuepy uswdojaaaq
‘weibold yoes 1oy anpayog juswdojpraq

‘Alquaesse ‘(epy) TOH :sebenbue

‘uoddns ‘suoneoldde ‘swalsAg :aiemyog jo sedA]

‘punolb ‘pieoqdiys :asemyos Jo sse|n

'swelboisd gL = syosloid vz
syoaloud pz :seiuedwo)n syl

S$103r0Hd LNJNJO13A3A IHYMLIOS SAINVAINOD HIHLO

dNOHO SOILNVYNOHLSY VLLIIHVYW NILHVYWN 3SvE V.L1vd

Martin Marietta

W. Cheadle
18 of 29

VALTIMNTWN NILE TN

Martin Marietta
19 of 29

W. Cheadle

0 ccc 10l 1ot JOF Jbs 2t et [vb | ¥b [st st]os J2r 1 2v | st Jzr[or oL [sevefer |z ferforfe]s Iv101
2t 1 s |s Js [s [s [s s [s | | L S Y . v 1t (s s |s s [s s |s]s ALITVND
ts 1 s 1s s s s v ¥ ¢ ¢ e ez v] s [s{s | s [s|[s{s|s{s|s [s]s | uvonauisa
ttzl v 1 v 1 v ls |9 |8 |6 (s6 ot [or |zt | cr[vt[s'vrferlserfsrrfer]or|[s | 2]o [s [v]ec]| uoNa mss
os | s | s s s s] s {s] v | o v] v | t] T |segje]| ecjeje|vfr|v v |v]|¥Y| yonasas
W/NW
0'v| 1S3L SAS
104 33 10d
]] 1
S¥ 1S3l 1INN
$°S | LNOMD3IHD
$'S 3000
$2'9 N9OIS3a
§'9 S103H
BY HuJ yHlL Ha3 dad HAS mmm_ rn_m
Sz ve t©Z ZZ 1z 0Z 6% 8t ZL 9f &+ ¥t ¢€f ZF Lt OF 6 € Z 9 § v €t T

SHINOW HVYAN3ITVD

JLVYNILST 3TNA3HOS ANV LSOO (W3Dd) 13A0W DNILVWILSE 1SOD JIHLIaNVHVd
SHLINOW HVAN3VO ST :

ViZSi-alsS-TIn
30092 40 SaNIT I0HNOS MIN 008‘€Z NVHLHOS

Idd

JOHLNOD ANV ANVIWWOO IWIL-Tv3H HVIN ‘aNNOHD

37NA3HOS ININdOTIAIA IHYMILOS
QHVANVILS

FOVNONVT ONINWVYHOOUHd

3dALl LOVHLINOOD

JHVYMIJOS 40 SSV10

LINIWIDOVYNVYIN FHVMLH40S

AL TILITN NILEIT N

1s9]1 s|shjeuy sisAjeuy
. 1s9]1 1S3L | .101B801u] 1891 uBisag | uBjseq] | "sibay | 1daouo)
552.»5 rewdod | oo HUn opo) poeieq | wyiesd o._mm,:u”m ssemyjog| was4sg
waishg| 1080 259 HOS| ayshg
1531 3000 NOIS3Aa SIN3IN3HINO3Y
HO4 VvOd/vOd Hdl Hao Had HSS Has H4YS HdS
L9LZ-P1S-Aaod
1s9]1 [{-iesBajuj 1891 uBisaqg uBiseq ‘sjbay juojieso|y 'sjbay
woishks | 1od tod| wun |MMONPUI| 9D lpojieieq | wilesd |esemijog| siboy| waisAs
1S3l 30092 NDIS3a SIN3N3HIND3Y
v HHl HYL Had Had Has HUyS HdS
ViesL ‘691 ‘e8b ‘06v-SPIS-IIN

ININdOTIAIA FHYMLH0S

Martin Marietta

W. Cheadle
20 of 29

SININOJROD UVALIOS ¥YIINAWOD DISD 1100V NOILVMNOIANOD 1TVOISAHd VOd MITATY NOIS3AA XYVNINITI¥4 ¥aAd
MNATAMY NOTLIVIILIIVAD TVIMOd 304 11anV NOIILVINOIANOD IVNOIILONNA VId MITAZY NOIIVOI4IDAdS AYVMLIIOS ¥SS
G111 N0IIVUAOIINGD FUVMIIOS ¥ILNdWOD 108D MIIAZY SSANIAVAY 1SIL YUl MIIATY NOISTA WILSAS ¥dS
RILT NOILVYNOIJANOD IYVMAUVH IOMH MZIAZY NOIS3IA TVOILI¥D ¥AD MITIATY SININIYINDAY WILSAS IS
SISVHA TATDXD 3JI1 FUVMLIOS ‘FUVMAYVH QIZI11viIAI
ONILSIL
NOIILVY9ZINI
12S9 NOTIIVYOFINI
0980 ‘1831
LINN ‘300D N91s3d
vod 11vlad N91Sad
1 SINIWIYINDIAY
1344
vod M/S
-/
M/S - 4
1831 “ ||UNV v A% AV Aw VALK S10I1y a
Pl 3\I b ’
7\ NV NV AV NW ’ s M/H
vod
> SINIWIIINDIY
NOIS3d
vol M/H
NOISAA 1344
1s3l 1INN 11V13ad
1s3al S
NOTLIVYOZINI NOIIVDI¥EVd
IOMH

W. Cheadle

=AGE IS

[Py
-

ORICINAL

Martin Marnetta

21 of 29

4 ITY

H

N

OF FOUA O

27peIY)

M

INIHIOTIAZd FYVMIIOS QNV TYVMAEVH INIYANONOD (912-Als-q0d

uo
SCOS
SV UV
Jd5H
™CD
H -aWwod
us
UA

FOVMONY

3ONEN0O3S 1S3l

VYO

1H0ddNS M3N

sberbe o
[eased
0800
olsed
UenIod
abenbue Alquuassy

saifuy
0L
SNI

II SN
102N

FIOVMONYT H3SN
NOLLYH3NED HLS

aSIn
Boro1d

vOv

SNOLLWOI Ky MIN

FOVMONVYT
SNOLLVOIMddY WIO3dS

abenbuen o
v
[eosed
arseg
0800
UerJo
S H
I SAO

elnor
aberfiuen Alqussssy

vQav

WILSAS M3N

olseg
wenicd
[edsed

aberfe A1quuassy

LORONIISUL auUTUORIA

FHYMLI0S 1L H90ddNS

JEYMLIOS SNOLLVYOIMNddY

FHYMLF0S SINZLSAS

SHSTH 3DVMONYT

ISvd v1ivd

rietta

rtin Ma

W. Cheadle
22 of 29

VALITINTN NILH TN

&Sh yASe

£9¢ 46T 2S¢ 40¢

1531 3007 N9IS3d SINIWIYINDA
4@

(' IV “SdY ‘YY) SW3LSAS (3ZIYILNAWOI NV ST00L “TIVNONYT MIN 40 3SN

yAS LSh

£5¢ %0¢ 144 yA%4
1531 3002 N9IS3@ SINIWRINOI

v 104 104 Wil 40 ¥ad ddS HYuS ¥dS

(SHITATY NOISAC

1V GINIWYX3 NOILVINIWNJ0Q “@3INI43Q 'S103Y) HIVO¥ddY dI¥NLINYLS NMOd 401
Ay 25¢

205 AT 51 A

1531 3002 N9IS3d SINIHFFINOIY
4@

IN3WdO0TIAIT 300 1113HIVdS

INFWdOTIAIA FYYML40S

Martin Marietta

W. Cheadle
23 of 29

D078 48d sinoy $g'2

%00} mom.L 0L
ot ¢ 0ud 90l sinoy S9L/ 0G4
0L bl ubug m/s :
b1 Jlz- ibuz swaishg Ll
VEE)
sinoy 91 / 0002
G280’
yjuow uew Jad ssull 0G|
< >
1se] sjuawalinbay
waysAg yiuow uew Jad saull 000°2-0SZ WwalsAg
< >
191 000 ubisaq Siualwamnbay

R ——

"Juawdo|aAsp 8lem}jos suoljedidde punoin .
"(MJOM) LOYS JO Hun B Sluasaidal 8pod JO 8ull 82IN0S yoeg .

‘6uipoo uey} alow sassedwoous MHOHT

3d00 50 3aNIM IDHNOS H3d SHNOH

Martin Marietta

W. Cheadle
24 of 29

VALTIMOUIWN NILE YW

Martin Marietta

W. Cheadle
25 of 29

'ONILS3] NOLLVDI4INIA @Y NOILVOITVA 40 3ONWWHOS¥3] A 130G, 3H| IA0¥Jg

'SINOINHII| SISAIVMY IAILVLIINVIY) ONV TWDILSILVLS HLOQ ONIS() 13d0y 3H] MOISK] o

300y Y HLI| ATIVOLIVWOLNY 3OVA¥IIN] THIJ| LVH] 3SV VAV Y dO3AX] ‘SISATWNY ViV NO a3svg o

'WVAM] 3ZATWNY ATFATLVLITVI) QW AT3ATLVLIINDYG o

'ViV(] 1037107 QW SINFWIHINOTY NOILOTTIO) NOILWROIN] 3MI43] 4

VALIIMUW NILY YW

STVYILIT ONIYLS -
STIVY3LIT Y3LIVYVHI -
SIN3WWOD -

NI SNOTOJIW3S S3ANTIX3 SIHL :31ON

SISIHINIYWVA NI 3SOHL Ld3IX3 “SYILIWIT3A SV @IS SNOI0D1L3S
INILNNOD A€ 300J 40 S3NIT 32¥N0S YAV ILYINIIVD IM

¢3000 40 3NIT 324N0S Ya¥Y NY SILNLILSNOD LWHM

IN3IWd0T3A3A 3YYMLH0S

Martin Marietta

W. Cheadle
26 of 29

VLALTIMTAN NILX TN

. g ¥ . (STV¥3LIT ONINLS) SH¥VYW NOILYL1OoND 378n0a NI @Isn SNOT0JIW3S (L
S (STVH3ILIT ¥31IVIVHI) SXIVW NOILY.LOND 379NIS NI 43sn SNOT0JIWIS (9
‘1X3L -- SIN3IWWOI NI SNOT0J1IW3IS (S
(Lv01d : g 7 ¥393INI ° V) 'SIS3IHINIAVJ
AG G3SOTINI 1SIT1 V NI S¥ILINVIVL JLYNIWYIL LVHL SNOT0JIWIS (¥
:d3LNNOJ LON 3¥V SNOT0JIW3IS IY3IHM S3ITdUVYXI ¥ 3HL

‘g+ VvV =2 SINIWILYLS JLVYNINAIIL LVHL SNOT0JIN3IS (£
‘¥393UINI + ¥ SNOILV¥V123d ILVYNIWIIL LYHL SNOT0JIW3IS (¢
‘017 1X3L1l HLIM §3SNVYI1D ILVNIWJIL LYHL SNOT0JIW3S (I

:d3LNNOI 3V SNOT0JIWIS FAIHM SITdWVYX3 £ 3HL

10N 3¥V () dN04 ‘3002 40 SIANIT 3JAN0S SV QILNNOD IV (£) IIYHL
‘'¥ay NI @Isn 33V SNOT0JIW3S NIHM S3WIL (L) NIAIS AV 3¥3HL
"SNOT0JIW3IS NIVL¥II 9NILNNOI A8 G3ILVINITIVI AV 3003 JO S3NIT 3JdN0S vav

RAIAVLIHM 'Y WYITTIM "T100 d3d

Martin Marietta

W. Cheadle
27 of 29

ONITNAIHIS AGNY ‘INILS0D ‘9INIZIS HaY

VALTIMUIN NI LMW

OdmAawuw

ISNY1I |
SINIWILVLS Z bl

SNOILY¥VY1330 S 30020 40 S3NIT 32¥N0S vav 8 3IAV JA3HL
SINIT ANVIE8 T 33V F¥3HL

SANIT LX3L ¢ 3¥VY JA3HL

IN3W3ILVYLS IN3IWWOD | S| 3¥3H1L

SNANL3IA 39VINAVYI P11 SNIVINOD WVI90dd ITdUVYXI VAV SIHL
! 31dUVYX3 aN3

ETIE
..V = g
N3IHL (2 V) 4l
N193g
'31VdVYd3Is SI (Z LNO S ‘2 NI :¥) SI LS¥I4 3¥NAII0¥d
B U X L= ONIYLS TVHILITONINLS
P = ¥ILIVEVHI VAILITTYILIOVEYHD
‘pp JONVYE SI Z 3dAL
3000 40 3INIT V¥ LON ‘INIWWOI ¥ S| SIHL--

wdimjooooadd<n nimi|a

N399I

S| 3TdWVX3 34NA3J0dd
‘017 1X3L HLIM

HV9908d Va4V 37dWvX3

ONITNAIHIS ANY ‘ONILS0D ‘9INIZIS HaH

Martin Marietta

W. Cheadle
28 of 29

VALIIENOW NILE DN

"UNOdS3y 0L ANV
d0d¥3 NV 133130 0L M/S 30 M/H ¥3H1I3 40 ALITIGY *3INV¥IT0L LNV @

"1377vdVd NI NNY 38 0L SIN3IAI SMO0T1V ONIASYL @

"43A0 ANV d3A0 Q3sn 34
0L 3ANLINALS I1907 IWOS SMOTTVY ‘ALITIAYISN-3¥ SIIVINOINI :SIIYINII @

"3WHIL NOILVYTIdWOD 1V 43133130 3¥V SH¥0dY3 LVHL S34NSNI :ONIdAL INOJILS @

'39VIVd 3IHL1 34IS1n0O
WOd4 0371vI 38 NVI 1VHL S3ILILIN3I g3Lvi3y dNoy9 0oL d3asn :S39VAIVd D

"d3141LIN3Q1 38 TT7IM SA0AAT
‘NOILIONOD SNO3INOJYI NV 40 IN3IA3 IHL NI ONITANVH NOILd3IX3 @

'S3TNAOW 3FLVNIQY0ENS 2 ITNAOW LNIAVd NIIML3Q FIVINIT V.IVA INOALS D

S3lngdlyLlly 3JIOVNONVT vav

Martin Marietta

W. Cheadle
29 of 29

INITNIIHIS ONU “INILS0D ‘ONIZIS HaY

PANEL #3

STUDY OF SOFTWARE PRODUCTS

H. Sayani, Advanced System Technology Corporation
J. Hihn, Jet Propulsion Laboratory
R. LaBaugh, Martin Marietta

kS

Fisll

am

e Veias edlad OT FILMED

s

ASTEC |

REVERSE ENGINEERING

AN AID TO UNDERSTANDING SYSTEMS

Presented
At
The Thirteenth Annual Software Engineering Workshop
NASA
Greenbelt, MD
November 30, 1988

By:
Hasan H. Sayani, Ph.D.

Advanced Systems Technology Corporation (ASTEC)
9111 Edmonston Road - Suite 404
Greenbelt, Maryland 20770
(301) 441-9036

Copyright © 1988 by Advanced Systems Technology Corporation (ASTEC)
Greenbelt, Maryland

A1l rights reserved. No part of this material may be reproduced in any form
or by any means, without permission in writing from ASTEC.

© 1988 by ASTEC
H. Sayani

ASTEC

1 of 24

Reverse Engineering
An Aid in Understanding Systems

by
Hasan H. Sayani, Ph.D.

Advanced Systems Technology Corp.
9111 Edmonston Road, Suite 404
Greenbelt, MD. 20770

1.0 THE NEED FOR REVERSE ENGINEERING

Several reasons may bring an organization to consider reverse engineering.
It is possible that an organization’s software (code) has not been
adequately documented, either from its inception or after multiple rushed
changes. To understand the system behavior, or to maintain the system, the
organization would need a more global view than that provided by a program.
On the other hand, an organization might find that it would 1like to
consider, before actual redesign, the impact of proposed changes to an
existing system. Or, an organization might need to grasp how two or more
existing systems could be integrated. One other reason might be to update
the underlying technology of hardware, operating system or system software
(such as change from a file management system to a database management
system).

H. Sayani
ASTEC
20of 24

2.0 WHAT IS REVERSE ENGINEERING AND HOW IS IT APPLIED?

The process of Reverse Engineering entails translating existing code into
some "higher" form. Reverse engineering can be applied for one of several
applications.

2.1 Making Code Easier To Read

When programs have evolved over time, and written by various
individuals with differing degrees of sophistication, the resultant
program code becomes difficult to read. In such cases, Reverse
Engineering may help in re-structuring the code (often referred to as
"re-engineering") to make it easier to comprehend.

2.2 Synthesizing Diverse Existing Systems

Previously stand-alone systems may need to be synthesized into a
coherent single system. In such cases, the individual systems may have
been written in different programming languages, or use different
technology to manage data. Reverse Engineering would help in producing
a synthesized abstraction which could be properly evaluated for
procedural, control and data structure consistency and a new system
re-generated from such abstractions.

2.3 Maintaining An Existing System

Making changes to an existing system requires that the maintainer
understand the effect of making the changes. In particular, it is
important to recognize not only the first order effects but also the
ripple effects. The Reverse Engineering mechanism can be used both to
estimate the impact of the change and to ensure that the change is made
correctly.

2.4 Redesign Of An Existing System

The development of a new system requires that it retain all the desired
features of the current system and incorporate the new features.
Further, the deployers need to be able to show the relationship of the
new system to the existing (old) system. This task is made much easier
if the basis for the new system 1is an abstraction of the current
system.

H. Sayani
ASTEC
3 of 24

3.0 COMPONENTS OF A REVERSE ENGINEERING TOOL SET

A Reverse Engineering System is made up of several components as shown in
the accompanying figure.

3.1 Generalizable Translator

The main component of the Reverse Engineering System is a generalizable
translator which has two main parts: one that recognizes known
constructs of the Tanguage, and another that can perform the
appropriate actions desired when a construct is recognized.

3.2 Abstraction Repository

The major action that the generalizable translator performs is the
production of abstractions suitable for storage and retrieval. Hence,
a required component of a Reverse Engineering System is an interface to
an appropriate repository. An example of such a repository is the
PSL/PSA system. A key characteristic of such a repository is the
availability of a formal underlying conceptual model that is not tied
to a specific programming language, and one that permits controlled
synthesis of abstractions.

3.2.1 Browsing Capability

The repository must have capabilities which allow the users
to browse/query the repository in a completely flexible
fashion.

3.2.2 Reporting Capability

The repository system must have a reporting mechanism that
permits the production of reports per specified format, or
"download" information that can be input to other tools such
as CASE tools.

3.3 Code Re-generation

Some applications may require that the code abstracted be re-generated
(if only minor changes have been made). A complete re-development of a
system from a higher Tevel abstraction would fall into the category of
automated system development and is beyond the scope of the discussion
in this paper.

H. Sayani
ASTEC
4 of 24

0" EA
aw "241ISV Aq ‘886t iybrafidoy

Bulloauibug asianay
10}
[OPON 90Ud18}8Y

” 1diHOS sav _

SOY0Hd ISH

4a vSd

ST
\\\\\\llll.lll lllllll ~ \\\\ ///
[soumog jebiey | [usm
| ~{ .op05 | vSd
| -epo9
lllllllllllllllllll —a ///l|||\\\\ V4
37Jn0g ws tuey D3y Jo}eUBuRg Joye ndiuey)
yobue | ButJaaUTbUI-2y }uoday KJ01} 150day

S}uUsWa}e}g
Auoy 150day
13bue |

Ja19Jdusiu]

pivubiseq

Joyese|eox3

°|qeugy

lieseqp

Nv4d.lHOd

704090

RSl

EPN glely
TeutbtJg

H. Sayani
ASTEC
5o0f 24

4.0 A REVERSE ENGINEERING METHODOLOGY

There are several steps involved in applying the Reverse Engineering
process.

4.1 Recognizing The Programming Language Dialect

Since no programming language conforms perfectly to a standard, reverse
engineering requires the practitioner to examine the code and identify
special coding constructs that deviate from the norm. This implies

access to a representative sample and a "pilot" application of the
process.

4.2 Accomodating The Identified Programming Language Dialect

The generalizable translator may have to be given additional rules for
handing both normal coding constructs and those that are special to
this code.

4.3 Translating The Code

The code is then passed through the generalized translator to produce
the abstraction that can be entered into the repository.

4.4 Examining the Abstraction

Reports are derived from this mechanism for examination and evaluation.
Formal documentation can be produced incorporating this information.

4.5 Using Ancilliary Tools

The information can be passed to another tool (e.g., a CASE graphics
package) for viewing the structure and function of the code in
pictures.

4.6 Integrating Systems

Information about (an)other system(s) can be merged with the
information about the reversed engineered system to determine impact of
integration.

4.7 Code Re-generation

Information about the target system could be handed off to a translator
for reinterpretation in the form of a programming language.

H. Sayani
ASTEC
6 of 24

5.0 SCENARIO OF USAGE

There are several strategies for using the Reverse Engineering Mechanism.
The one described below has evolved over several time and takes into account
the need to manage large amounts of information and to evaluate the target
system in detail as well as in its full scope. The whole process also tends
to be iterative.

5.1 Micro Examination
First, individual units of code (e.g. Programs, Copylibs) are

translated. Each of these translations are stored as an isolated
database 1in the abstraction mechanism. This permits the examination of

local structures: procedural as well as data structures. It also
affords an opportunity to examine the algorithm used at a "micro”
level.

5.2 Macro Examination by Features

After all the individual units of code have been examined, all those
units that comprise a system need to be synthesized. One obvious
approach is to take all the individual abstractions (individual
databases) and "merge" them together. Experience has shown that such a
database becomes far too large and unwieldy, both from the performance
standpoint and the human factors. An alternative strategy is to
synthesize subsets of individual databases. An example would be to
extract all procedural interactions between code units and populate a
"procedural structure" database. Another such synthesis would pull out
the data structures, and still another might make a detailed "data
element dictionary" database. Each of these could be examined and
annotated as necessary. This strategy does not preclude eventual
merging of these databases into a composite database.

5.3 Evaluating The Abstractions

Both the individual databases and specially synthesized databases can
be used in "browse" or "query" mode to pinpoint answers to questions
that precipitated the Reverse Engineering process. Answers may be
sought for questions about the boundaries of the system, the degree of
coupling, the implications of changing data structures, etc.

5.4 Applying The Results

The answers obtained above would make it feasible to take the necessary
actions to solve the problem. These actions could result in a strategy
of performing certain tasks such as determining the scope of the
ripples likely to occur during a particular maintenance task, or a
strategy for the addition of other design components using CASE tools
and requiring a re-design of the new system.

H. Sayani
ASTEC
7 of 24

6.0 USAGE OF REVERSE ENGINEERING ON ACTUAL PROJECTS

Reverse Engineering has been applied to various systems with differing
objectives.

6.1 Maintenance Application

A particular application, the maintenance of a complicated information
system, will be used as an illustration of the potential payoff for the
application of Reverse Engineering.

This system was made up of several subsystems each with many major
functions and sub-functions. These sub-functions eventually were
broken down into primitive processes (as in Structured Analysis). To
understand the magnitude of the problem, one of the subsystems was made
up of 45 major functions which broke down into 329 sub-functions which
in turn resulted in 2,711 primitive processes. Similarly, one of the
components of the system had 36 data stores with 4,498 record types.
Several of these record types had over 180 data elements. Finally, to
illustrate the maintainers’ nightmare, one of the Processes used 64
data elements and changed 61 of them. Similarly, one of the data
elements was used by 422 Processes and changed by 455 Processes!

This system was Reverse Engineered for the purpose of maintaining it.
Management kept statistics and a semi-controlled parallel group that
performed the maintenance task without the aid of Reverse Engineering
tools. Maintainers with the Reverse Engineering System reported an 8
to 1 improvement in productivity while noting that certain types of
maintenance assignments would not even have been attempted by them had
they not had access to the Reverse Engineering Mechanism. The casual
statistics from the control group (without the tools) showed that they
were still working on the problem four days after being assigned it
while the group with tools had fixed it in two hours. Further, the
group with the tools had far more confidence in the "fixes" made than
the group without the tools. Lastly, the group with the tools was able
to estimate the time needed to perform the fix with some degree of
confidence after studying the problem whereas the other groups
guestimates were off the mark, often by an order of magnitude.

6.2 Re-design Of Existing System

In another application, system developers were able to use the Reverse
Engineering Mechanism to quickly understand the "current physical”
system. They annotated portions of it with the help of current users,
and were able to move on rapidly to add new features desired. This was
done with the confidence that they had not left out any of the desired
features of the current system.

H. Sayani
ASTEC
8 of 24

Based on these and similar projects, we conclude that reverse engineering is
feasible and can be invaluable to organizations that:

have to maintain poorly documented code

want to redesign a system poorly understood
system

need to project the impact of desired changes
to a system

require the integration of multiple systems.

H. Sayani
ASTEC
9 of 24

7.0 POTENTIAL PITFALLS

We would not 1like to 1leave the impression that Reverse Engineering is a
simple, trivial solution to all problems of managing code. Properly managed
and with realistic expectations it can be a most useful approach. However,
there are several potential pitfalls that an organization may encounter.
They range from very mundane problems of Tow level technology to subtle
issues of organizational politics. We touch upon a few of these below.

7.1 The Mechanics

Low level technology problems are of the type which make it difficult
to transfer data (e.g., source code) from the operational system to the
Software Engineering Environment in which the Reverse Engineering
Mechanism is housed. These range from mismatches in tape formats
available and readable, to the introduction of spurious information (or
the removal of useful information) in a transfer across a Local Area
Network. In two of the projects we were overseeing, this process
caused a delay ranging from one to six weeks.

7.2 Local Variations in Programming lLanguages

Supposedly standard programming languages may have local variations
taken care of by local pre-processors. An example of this was a system
where we found (by browsing through the repository of abstractions)
that several paragraphs in a COBOL program were referred to but were
not found in the code translated. We were informed that those were
taken care of at "pre-compile" time!

7.3 Stylistic Variations

A system which has evolved over time usually has been worked upon by
several programmers. Each of these may have learned particular styles
of programming. Further, these styles also evolve over time. However,
there never is time to bring previous programs upto date to conform to
current styles. Hence, it becomes difficult to comprehend why one
program grouped a certain set of operations differently from another
program in the same system.

H. Sayani
ASTEC
10 of 24

7.4 lack Of Standards And Conventions

Even today very few development shops have comprehensive standards and
conventions for programming. A classic example is the naming of data
and procedures. Both the style of naming and the scope of this naming
can cause a significant amount of problems when they are being studied
as abstractions. For instance a name may be made up of components
which may be abbreviated inconsistently. Or, a data name may be
qualified by the program it appears in (making it de facto local data)
even though it is shared globally, thus making it difficult to
synthesize a system-wide view of data. One extreme case of this type
was where a database designer had used a distinct name for each data
element in every view rendering the database design useless.

7.5 Technology Transfer

Technologists often do not realize the importance of recognizing the
effect of commerce on their products. To illustrate, while a
technologist would be self-congratulatary about the eight to one
savings of costs, a contractor would be concerned about the "cost plus”
implications of such a technology! Finally, individuals who have
Tearned to perform tasks such as program maintenance without the use of
tools may often feel threatened that much of their expertise would be
rendered superflous with these tools. They would be quick to point out
the flaws of these tools - after all they were not invented here!

To summarize, the Reverse Engineering Mechanisms we discuss here are not
simple, pre-packaged solutions that can be brought in to an organization and
by their mere installation provide all the potential benefits. We feel that
these tools are better compared to the concept of the big-8 "practice”;
i.e., they need to be adapted to the local situation, helped along with
consultation and the evolved tool then 1left behind for use by the
organization, if desired.

H. Sayani
ASTEC
11 of 24

8.0 FUTURE DIRECTIONS

We feel that the Reverse Engineering concept has barely touched the tip of the
development iceberg. We ourselves are interested in several aspects of the
process and will highlight some of these below.

8.1 Improved Interpretation Of Source Code

Current approaches use the "compiler-compiler" approach for the
interpretation of the code and the performance of actions to be taken
when known constructs are recognized. This approach requires
"re-binding" of mechanisms every time the simplest of variations has to
be made. By its very nature, it requires the tool developer to perform
this task. We see this process being replaced by more sophisticated
mechanisms which would not only make the task easier, but also allow
the end-user to make the selection of actions to be taken. We feel
confident that this can be achieved because we have developed this
technology and is in use in our bridges to CASE tools.

8.2 Better Repository Interfaces and Abstractions

There are several approaches to translating code to some other form.
One is a simple one pass approach which interprets the code; another is
a multi-pass translation with internal "symbol table" development; the
last pass translates the contents of the symbol table to the desired
abstraction. The most desired approach would provide an active
interface to a dictionary system which would allow the enriching of a
dictionary database as more information became available about an item
from the source code. This and the need to regenerate codes in
different languages would require the development of a more
sophisticated abstract model of programming.

8.3 Better Interfaces To Other Tools

Since the interpretation of code as abstractions results in a
complicated information system, it is natural to provide some
computer-aided support for browsing through these abstractions. Good
repository systems such as PSL/PSA provide this capability. Another
natural medium would be CASE tools. Hence, it would be appropriate to
perform a translation of code into, say, Structure Charts or Data Flow
Diagrams which could not only be examined by CASE tools, but also
modified using the CASE tools. This process is becoming feasible now.
We feel that such needs will also lead to improvement in curent
methodologies for analysis and design and an improvement in the
"forward" process of systems development by requiring more precise
traceability and standards.

H. Sayani
ASTEC
12 of 24

8.4 Re-generation Of Code

While "re-engineering" mechanisms can perform this task today, it is
performed in a rather restrictive sense. Usually, the regenerated code
is in the same language as the original code, or the translation is an
incomprehensible Tine by line encoding of code from the source language
to a target Tlanguage. The latter approach often results in a "step
child" syndrome. The newly generated code is neither understood by the
source code specialists nor the target code specialists. We feel that
the abstraction to a higher level view and the re-construction to a
view specific for a desired target language would be more appropriate.
This requires a better abstraction model (as discussed above) that
models both the source and target languages and programming in general.

8.5 Technology Transfer

Finally, we have been sobered enough by practical experience of
transfering technology to using organizations to realize that the best
of technology will only perform to its full potential only if properly
introduced. This requires careful handling of issues ranging from
politics, human factors, finance and hidden agendas. Some of us feel
that the consideration that needs to be given to these factors often
outweighs the technology by as much as four to one!

H. Sayani
ASTEC
13 of 24

THE VIEWGRAPH MATERIALS
FOR THE

H. SAYANI PRESENTATION FOLLOW

el FILMED PAGE__'7 INTENTIONALLY BLANK

ASTEC |

REVERSE ENGINEERING

WHAT IS REVERSE ENGINEERING?

Working back from a phase in the development Life Cycle

e from program code
 to a possible design which the code implements

- or, to the requirements which the design addresses

In the absence of supporting documentation, it is akin to
e An Archaeological process

- ” _.we see these hieroglyphics, therefore,

Success depends on:

* recognition of possible:
- Loss of information

- Ambiguities

¢ willingness to:
- Supplement the information

- Capture it formally

© 1988 by ASTEC
H. Sayani
ASTEC

oL BOE [INTENTIONAWY puayg 17 of 24

A iEon
PRI ME]

* ASTEC

REVERSE ENGINEERING

WHY PERFORM REVERSE ENGINEERING?

To understand the current system
* ”..Why does the system behave like this when we...”

To be able to make changes to the current system (maintenance)

* ”...If we were to change this, what would its impact be?...”

To be able to modify the system (enhancements)
* ”...Where would we best add this functionality?...”

 ” _.How would it affect the data structures?....”

To merge a system with another (integration)
* ”...What is the common data?...”

e 7 ..What are the new interfaces?...”

To inject new technology into an existing system
* ”...Replace the various file access methods with a DBMS...”

H. Sayani © 1988 by ASTEC

ASTEC
18 of 24

0 gn
aw ‘23ISV Rq ‘ggel i1ybrafidoy

pivubiseq

Buitesulbug aslaAay
10}
|9PON 90udi1djdYy

n 1dIHOS sav

i

10}e10|60X3

O

8|qeu3y

liieseqp '
sooud ISt [€a vSd o
§ TN NVH1HOd
\\\\‘\l\lllll llllll \ \\ ///
| e0.nog j8Bie L _.& g\ usy -
T\ eeen [vsd :
lllllllllllllllllllllll /I/Illl\\\\\\ w
oy
q m#cwsw#m#m
PN glels ws TuURY I3 Jojeuauaq Joye ndiuel) 40} 150d3y 32Jn0g
19bue | Butuasau1bu3-ay 1uoday K40} 150doy 19bue | “42}3uduRyu] [eu1b14Q

H. Sayani

ASTEC
19 of 24

REVERSE ENGINEERING

METHODOLOGY

Steps involved:

Ensure that parser recognizes deviations from norm

Instruct translator to handle both normal and special constructs

Produce appropriate abstractions in target dictionary language

Derive appropriate reports from the dictionary
- For browsing
- To produce formal documentation (per specific standard)

Interface with other tools (e.g., a CASE Graphics package)

Merge other information
+ About changes
- Another system

(* Interface with other translators to reproduce code
- In the same language
* In another language)

H. Sayani © 1988 by ASTEC

ASTEC
20 of 24

ASTEC .
REVERSE ENGINEERING

SCENARIO OF USAGE

Analyze individual “code units” (e.g., Programs)

e Examine the Procedural architecture
e Study the Data Structure

Synthesize desired aspects across the code units of the system

¢ Procedural Interactions

e Data Commonality

Note: May need to rationalize names

Pinpoint answers to questions that precipitated the process

Take necessary action

« Modify the abstractions (& regenerate the code)
e Change the code

© 1988 by ASTEC
H. Sayani

ASTEC
21 of 24

ASTEC

REVERSE ENGINEERING

EXAMPLE OF USAGE

Large System to be maintained:

* A subsystem with:

* 45 major functions,
329 sub-functions,

2711 primitive functions

» 36 data stores

4,498 record types: several with over 180 elements

- Interactions
e.g., a Function uses 64 elements and changes 61

an Element used by 422 Functions and changed by 455

Reported Savings (not counting outliers)

* 8 to 1 savings in time

* vastly reduced "re-work” (no unaccounted ripple effects)

H. Sayani © 1988 by ASTEC
ASTEC

22 of 24

ASTEC

REVERSE ENGINEERING

POTENTIAL PITFALLS

From the mundane....

o Inability to transfer source code from operational

environment to the Software Engineering Workbench

Through the expected...
 ”_.Did not know you could do THAT in FORTRANL....”

And People’s Style...

»

» "Why would you clump those actions in one Paragraph?...

Along with Organizational Standards (or lack of them)...
e "That’s only the third way to spell EMPLOYEE-NUMBER...”

And esoteric issues...

» ”__We should get a better abstract model common to ...”

To Politics
o ”__If we perform this job 8 times faster, we get paid less...”

And Technology Transfer
*NIH

© 1988 by ASTEC
H. Sayani
ASTEC
23 of 24

REVERSE ENGINEERING

FUTURE DIRECTIONS

Improvements in the Technology

Interpretation of Source Code
- Broader in scope
- Adaptive (to style and usage)

Abstractions produced
- Sophisticated conceptual model: across languages

Better interfaces to CASE tools
* Formal adaptation of Methodologies for Design and Analysis
* Improvement in the Forward process (Traceability, Standards)

Re-generation of program code
- Original language
* Different language (using "filters”)

Improvements in the Technology Transfer
* The delivery platform
e Education of Engineers
* Acceptance by Management as part of the forward life cycle

H. Sayani © 1988 by ASTEC

ASTEC
24 of 24

N91-10613

]

5 ,"/ . f
Ada Software Productivity in Prototypes: S0
A Case Study i
Jairus M. Hihn - Gy

Hamid Habib-agahi [N
Shan Malhotra 'J/j J
Jet Propulsion Laboratory
California Institute of Technology

ABSTRACT

This paper is a case study of the impact of Ada on a Command and Control project completed at the Jet
Propulsion Laboratory (JPL). The data for this study was collected as part of a general survey of software
costs and productivity at JPL and other NASA sites.

The task analyzed is a successful example of the use of rapid prototyping as applied to command and
control for the US Air Force and provides the US Air Force Military Airlift Command with the ability to
track aircraft, air crews and payloads worldwide. The task consists of a replicated database at several
globally distributed sites. The local databases at each site can be updated within seconds after changes
are entered at any one site. The system must be able to handle up to 400,000 activities per day. There
are currently seven sites, each with a local area network of computers and a variety of user displays; the
local area networks are tied together into a single wide area network.

Using data obtained for eight modules, totaling approximately 500,000 source lines of code, we analyze
the differences in productivities between subtasks. Factors considered are percentage of Ada used in
coding, years of programmer experience, and the use of Ada tools and modern programming practices.

The principle findings are the following. Productivity is very sensitive to programmer experience. The use
of Ada software tools and the use of modern programming practices are important; without such use Ada
is just a large complex language which can cause productivity to decrease. The impact of Ada on devel-
opment effort phases is consistent with earlier reports at the project level but not at the module level.

Introduction

The Economics Group at JPL has been involved in the collection and analysis of soft-
ware cost and productivity data for the past three years. The NASA Historical Database
contains data for over 100 subsystems including 10 different projects.
[Economics Group 1989] The JPL Software Database currently contains data for 4 projects
with 39 subsystems.[SORCE/Economics Group 1988] During the coming year data on seven
more projects will be collected. A relatively unique feature of these databases is that
they contain data on all the subsystems of each project for which information could be
obtained. Most software databases used for research contain only one or two observa-
tions from any one project. The advantage is that we are able to control for differences
between projects which are not directly measured by the specific database fields and
also can also analyze within project variations in effort and productivity. The disadvan-

J. Hihn

JPL
| of 32

tage is that a larger number of observations must be collected to get a sufficient number
of independent data points for statistical analysis.

The data collected is primarily based on the COCOMO definition of a software environ-
ment. [Boehm, B. 1981] Table 1 lists the cost driver contained in the database which de-
scribe the environment. The database also includes size, measured by executable
source lines of code adjusted for inherited and modified code, and effort, measured by
work months. The portion of the life cycle for which effort figures have been collected in-
cludes from the requirements analysis phase through test and integration. Sustaining
engineering and the systems engineering effort to develop the requirements are nor in-
cluded. However systems engineering effort spent on requirements design updates and
formal design reviews is included. Two estimates of effort were collected. Technical ef-
fort figures gathered from interviews with the technical leads, estimates direct effort by
programmers and the technical managers. Implementation effort figures derived from
the task management office, include all labor charges to the project from the task man-
ager down. The non-direct labor charges are distributed across the subsystems on a
proportional basis. These charges include integration and validation testing, documen-
tation and management labor time. Implementation effort also includes secretarial time
which could not be separated out. Effort figures do not include upper level project man-
agement or system engineering previous to the SRR.

Table 1
Database Description

Product Attributes Computer Attributes
Required reliability Time constraints
Software complexity Storage constraints
Database size Host volatility

Turnaround time

Personnel Attributes Project Attributes

Analyst ability Software tools

Analyst experience Modern programming practices
Programmer ability Schedule

Language Experience
Virtual Experience

The average productivities in the NASA Historical Database are 1.5 to 3.5 SLOC per
day for flight software and 7 to 10 SLOC per day for ground based software. There were
a few subsystems which reached approximately 14 SLOC. In the JPL Software
Database, the average productivity ranged from 6 to 18 for 3 DOD projects and one
ground data capture project. There are two command and control projects which had
the highest productivities of the projects we have studied. Project 1 used Ada and rapid
prototyping to reach a implementation productivity of 17.9 SLOC/ work day. Project 2

J. Hihn

JPL
2 of 32

which was very similar to Project 1 did not use Ada and had an implementation produc-
tivity of 13.5 SLOC/ work day. The purpose of this study is to attempt to isolate the im-
pact of Ada versus the impact of software tools, modern programming practices and
other environmental factors on productivity.

Project Description

The US Air Force Military Airlift Command (MAC) runs one of the largest airlines in the
world. Scheduling problems are accentuated because flights, crews, and payloads can
be changed at any time in order to meet political and military objectives. MAC is in the
process of automating its command and control system by replacing its current
scheduling system, based on grease boards and the telephone, with a network of
workstations supporting a replicated database with real-time displays. Two major
components of MAC's Command and Control Automation Project are being completed
by JPL. Project 1 supports the vertical command and control operations, and Project 2
supports the actual execution of tasks. Project 1, a successful example of the use of
rapid prototyping, consists of a globally distributed replicated database with sites from
Germany to Hawaii.

Developed as a prototype which became an operational system, Project 1 had an
unusual software life cycle for a delivered system. JPL was required to develop Project
1 within two years at minimal cost. The functional requirements were vague becausc
the sponsor was not very computer literate. The project manager compensated for
these factors by waiving many of the standard formal design, documentation, and
testing requirements and by developing a very close working relationship with the
sponsor. The final requirements evolved as part of a joint effort between the project
team and the sponsor. Detailed documentation, except for the user's guides, could be
written after the project team and the sponsor had agreed that the system was working.

Project 1 consists of five application subsystems and three support system subsystems.
The applications support the following five MAC functional groups: Current Operations
(DOO), Transportation (TR), Command and Control (DOC), Logistics (LRC), and the
Crisis Action Team (CAT). The software work breakdown structure is similar to the
functional breakdown; therefore, the descriptions which follow of functional groups also
serve as descriptions of corresponding software tasks. DOO performs flight scheduling
and resource planning. TR is responsible for personnel ticketing and cargo loading and
unloading. DOC monitors the progress of each flight. When en route mechanical
failures occur, LRC provides information.which assists in the prompt servicing of debili-
tated aircraft. CAT controls system responses in the event of a threat or emergency.

System support for Project 1 resides in three subsystems: Graphics, Operating System
Shell, and Database. Graphics produces a graphical display of database information
while allowing the user to manipulate screens via a user interface. Operating System
Shell provides an interface to VMS OS, network commands, and low level VMS
functions. Database supports database design and control.

J. Hihn
JPL
3 of 32

Table 2

Development Data
Technical Implementation Technical |mplementation
Size Effort Effort Productivity Productivity
Subtask (KSLOC) (Work Months) (Work Months) (SLOC/day) (SLOC/day)
Application Software
DOC 72 118 207 32 18
DOO 115 140 245 43 25
LRC 45 28 49 84 48
CAT 23 36 63 34 20
TR 70 60 105 61 35
System Software
Graphics 20 72 145 15 8.3
Common 110 258 453 22 13
Database 37 110 193 17.7 11
Total 492 822 1,460 31.5 17.9

The development data collected was based upon the status of the project in January
1988 which was before the software system was actually converted into a formal prod-
uct. The total size was approximately 500,000 source lines of code.! The sizes of the
modules range from 20,000 to 115,000 source lines of code. The code count is based
on executable source lines of code; the size figures do not include comments or blank
lines.

The productivity figures for the Project 1 subsystems are presented in Table 2. The
average technical productivity of Project 1 as a whole was 31.5 source lines of code per
day, the average total productivity was 17.9 source lines of code per day. At the time of
final delivery of the system implementation productivity had increased to an average of
20 SLOC/ work day. This occurred even though documentation and testing effort in-
creased significantly during the last release. This is most likely a result of the staff being
further up on the learning curve with respect to Ada and the application domain. Among

1. Attinal delivery Project 1 will have reached approximately 750,000 source lines of code.

J. Hihn
JPL
4 of 32

the systems tasks, total productivities averaged 11 and ranged from 8 to 13 source lines
of code per day. The application tasks had total productivities averaging 25 and ranging
from 18 to 48 source lines of code per day. In general, application software is
associated with higher productivities than system software because application software
is less embedded and usually does not have to incorporate low level implementation
details.

Table 3 summarizes the values of the environmental factors included in the database
for Project 1. However, the table shows that experience and capability were rated high;
requirements volatility was rated low; and the use of modern programming practices
and software tools was extensive throughout the project.

Table 3
Project 1
Development Environment

Product Attributes Low to Nominal
Computer Attributes Low to Nominal
Personnel Attributes High
Project Attributes High

ANALYSIS

Project 1 developers achieved higher total productivity than the average NASA project
teams developing ground software. Several factors combined to permit this
achievement: the ability to match highly qualified personnel to the task needs, the use
of a prototyping methodology, the organizational structure of the development team, an
abundance of development tools, excellent communications with the sponsor, develop-
ment team cohesiveness, and the use of Ada.

The development environment contributed to the high productivity of the project staff.
The implementation managers were able to match skills and project needs with pro-
grammers whose capability and experience were well above average. Project 1 was
developed as an incremental prototype; the development strategy cut the standard de-
velopment life cycle. User's guides were written in parallel with the software. A single
design document was written at the end of the project which was the equivalent of an
FRD, FDD, SRD, and SDD combination to assist during the sustaining engineering
phase. In the testing phase a formal independent validation and verification was omit-
ted; and there were no formal preliminary and critical design reviews by an external or-
ganization. However, there was a formal internal review prior to each major software re-

J. Hihn

JPL
5 of 32

lease. The small overall staff size facilitated open communication within groups,
between groups, and with the sponsor. The sponsor provided ample hardware which
was appropriate to each task. Finally, the majority of the tasks were of moderate diffi-
culty or complexity.

One other factor that potentially contributed to the high productivity of Project 1 was the
use of Ada. At the time of the initial survey fifty percent of the total code was Ada and
varied from 0 to 90% across the subsystems. When the project started about half of the
programmers had an average of 1 year experience with Ada and the rest had no experi-
ence. A few had the maximum possible experience of about 2 to 2.5 years. There was
no formal requirement that Ada had to be used. In the early 1990’s Ada will be a more
mature language, but this level of staff quality was the best that could be hoped for
when software development began two years ago.

Ada advocates claim that the proper use of Ada, with its software tools, strong type
checking, and support of modern programming practices, increases programmer
productivity by over 100% and decreases program maintenance costs[Royce, W. 1987].

It is difficult to test these claims, however, because one must be very careful when
comparing the productivities of programmers coding in different languages. in
particular, Ada has several characteristics which can cause an Ada program to have
more or fewer lines of code than other third-generation language programs with the
same functionality. Ada's syntax for using objects can inflate an Ada program's code
count. On the other hand, Ada's ability to use generic procedures can deflate Ada's
code count, since a generic procedure would have to be written a number of times in a
third generation language. A recent survey found that the effect of Ada on code count
depends upon the application: business and scientific applications tend to result in larg-
er Ada code counts whereas avionics and automation projects tend to have smaller Ada
code counts.[Reifer, D. 1988]

Accurate measurement of the impact of Ada on productivity requires that major differ-
ences between organizational structures also be isolated. When subsystems of very
different projects are compared environmental differences not captured in the data can
arise. These differences especially relate to environmental factors such as communica-
tion between sponsor and contractor and cohesiveness of the programming teams. The
result is very large variances in the data; conceptually the problem is that of comparing
‘apples and oranges’.

The results of productivity comparisons between different projects and especially be-
tween languages is very sensitive to both the type of application and unexplained envi-
ronmental factors. To reduce the impact of these problems we will emphasize compari-
sons between modules with similar amounts of Ada and comparisons between projects
that are very similar in nature. The other project, Project 2, that will be referenced in the
analysis is also a command and control task performed under the same project office at
JPL and also for MAC. Both tasks were eventually housed in the same building and
both were prototypes at the time of this survey.

J. Hihn
JPL
6 of 32

Figure 1
Implementation Productivity Unadjusted

>

>

o 50

> A LRC

T T 45

- O

a 40

- 635 L TR

o =

©

— O 25 A

c

© 20 N A

2 15 A Database

Q 10 A

£ A

- 5
O L T L) T L L] T L) L 4 1
0 10 20 30 40 50 60 70 80 90 100

% ADA

Figure 1 plots productivity, (SLOC/implementation effort)/19, against %Ada, the percent
of code in Ada for a module.? The graph is suggestive of a positive correlation between
the percent of a subsystem's code written in Ada and the productivity of that subsystem
which would represent the combination of the impact of Ada and the cost of mixing lan-
guages. Comparing the average productivity of those modules with less than 50% Ada
to those with greater than 50% Ada one may be tempted to draw the conclusion that
use of Ada increases productivity by about 15 SLOC/day which would be close to a
100% increase. However there are many other differences between these subsystems
which also impact productivity and these must be identified in order to isolate the actual
impact of Ada on productivity.

For example, compare the productivities of subtasks with similar percents of code
written in Ada. LRC, TR and Database are three such modules. Programmer
experience and the use of modern programming practices and tools are significant dif-
ferences between these subsystems. At the time of the survey the LRC technical lead,
which achieved the highest productivity, had 2.5 years of experience coding in Ada and
six years of experience object-oriented design. The nature of the LRC task allowed
the team to use objects extensively. The LRC staff also consistently employed
modern programming practices and software tools. The productivity of the TR team

2. 19 represents the actual number of work days in a month when discounting for holidays,
sick days and general meetings. [Boehm, B. 1981]
J. Hihn

JPL
7 of 32

was lower than that achieved by the LRC staff; the TR staff did use modern
programming practices and tools, but the TR programmers, with one to two years of
experience coding in Ada, were less experienced than the LRC team members. The
Database team were less productive than either the LRC or TR teams. Database had
zero years Ada experience because the only Database Ada programmer left the project
on very short notice. The remaining team members were left to tackle a complex task
with high required reliability while learning to use a complex language. The
inexperienced Ada team did not use software tools and did not follow modern
programming practices. However, the following question remains: just how much of the
productivity differences do experience, tools and modern programming practices when
combined with Ada explain?

Before we can answer that question we need to control for other known environmental
influences. Some projects are more complex; others have a greater required reliability.
If the database were large enough, we could estimate the influence of the environmen-
tal factors including the presence of Ada. Since there is not sufficient data, a second
best solution is to use known estimates of the effort impact of the environmental factors.
COCOMO provides estimates based on non-Ada projects. Therefore we can normalize
for these factors using the COCOMO weights, and the remaining productivity variations
between modules are likely to be related to the presence of Ada.

Assuming that

Effort = A -LB -EAF

where L is executable source lines of code and EAF is the product of the cost drivers or
environmental factors then adjusted effort is just Effort/EAF. Adjusted productivity then
becomes

ATOP = [L/Effort]*EAF.

J. Hihn
JPL
8 of 32

Figure 2 displays the plot of adjusted productivity against % Ada . After adjusting for all
the software development environmental factors except language experience the ad-
justed productivity values vary from 6.1 to 11.7 SLOC/work day. All but two subsystem
adjusted productivities fall between 6.1 and 8.6 SLOC/work day.

Figure 2
Productivity Adjusted
Except for Language Experience

+ LRC

— ek = —A
o N A~ O

. + 1R

" Database

Implementation Productivity
SLOC/work day
0]
+
+

o NN O
+

% ADA

The average productivity for those module with less then 25% Ada is 6.9 SLOC/work
day and for those modules with greater then 60% Ada it is 9.1 SLOC/work day. Based
on a two-tailed t-test there is only a 10% probability that these represent the same distri-
bution. Hence we can tentatively conclude that those projects with a high Ada content
had a productivity 2.2 SLOC/work day higher then those with little or no Ada.
Compared to the average productivity for the whole project this represents a 12% in-
crease.

Within the group of modules with greater then 60% Ada the LRC module attained the
highest productivity of 11.7 SLOC/work day which represents a 4.8 SLOC/work day in-
crease or 25% improvement. The high productivity of Logistics is probably reflective of
their being further up on the learning curve. Logistics did have one member who had
the maximum possible Ada experience and substantial experience with object oriented
programming. This suggests that three years of experience with Ada and an Ada pro-
gramming environment might represent an important turning point. This point is further
reinforced given that during the final release productivity increased to 27 SLOC/work

J. Hihn
JPL
9 of 32

day which is when those who started with about 1 year of Ada experience would have
reached over three years of experience.

One other comparison that can be made is to compare the adjusted productivities be-
tween two similar projects one which uses Ada and one that does not use Ada. The
comparison project used Pascal. These results are reported in Table 3. The compari-
son project is also a command and control task for the Air Force and even for the same
contractor. The one major difference that cannot be controlled for is that Project 1 start-
ed out as a prototype but became an incrementally developed delivered system and
project 2 was a prototype from beginning to end. After adjusting for differences in com-
plexity and the lack of software tools the non-Ada project has a higher average adjusted
productivity. Based on a two-tailed t-test there is only a 5% probability that these repre-
sent the same distribution.

The implication is that if you take away the tools and rules and adjust for differences in
complexity and other environmental factors then the main impact of Ada as a language,
without its tools lowers productivity when the programming staff has an average of one
year experience. From the previous discussion we also suspect that once the experi-
ence level gets above three years then this difference will no longer be statistically sig-
nificant.

Table 3

Average Productivity
(SLOC/work day)

Total Adjusted
Project 1
(Ada & C) 17.9 7.7
Project 2| 136 13.6
(Pascal)

For this small sample the inference that can be drawn is that for experience of one year
or less we can explain the majority of the observed variation in productivities by what
we know about the impact of software tools, experience, etc on other languages.
Software tools are important and a sophisticated programming environment will in-
crease the productivity of any language. This interpretation must be discounted by the
fact that Project 1 is a prototype and therefore the testing and integration phase plays a
less significant role in determining development costs and it is here that one would ex-
pect Ada to have its most significant impact on development effort and productivity.

Ada and the Development Life Cycle
Previous studies have reported that Ada increases the effort in design, and decreases

J. Hihn
JPL
10 of 32

effort in the integration and test phase. One phase breakdown that has been reported
is 50:33:17 for Ada and 40:38:22 for FORTRAN.[Royce, W. 1987] Comparing to Projects 1
and 2 again we can see to what extent this pattern holds up for prototypes. Figure 3
shows a phase breakdown for the whole project of 36:37:27 for Pascal and 43:39:18 for
an Ada and C project. As expected, prototypes spend less time in design and more in
coding. Furthermore the Ada prototype spends more time in design and less in testing
then the non-Ada prototype.

While the effort by phase breakdown for the projects as a whole yields a consistent
story the view from the module level does not. There does not appear to be any consis-
tent pattern whatsoever.

Phase Distribution for

Command and Control Prototypes

100

90 —

80

70 -

60

50 —

40 —-

30

20

10 -

\\\‘\\\‘\.\\N\

\,\’\,\,\,\’\’\,\ N \‘

T
PR AP AR S S A SR AT
F R A A

A AN YT
PR A A A A S S

NN N N NN Y NN AN
PP A A A A

LA N L N S SR A W W Y
P A RN

NNV N VNN N Y NN
PR A A A S S

AR YR T T T T T T
P I I R L A

. . W VL. YU . V. V. V. . N

\\\\\\\\\

%/

N\

7

Integration and
Test

Coding

Detailed Design

Preliminary
Design

Requirements

\\\\\\\

PN N A N N NS

) .
w \/\,\,\ \’\"?‘\

Project 2
Pascal

Project 1
Ada and C

J. Hihn
JPL
11 of 32

epv ¥

- a—

Sjuswadinbay V//A

ubisaq

Adeuluwl[9dd
ubisaq palieysq P/

Butpod _H_

1S9l
pue uolledbaju|

NN N
LS

~
Y
AR Y
AR

~
S . S O W . W, N

~
~

AR Y
AR Y
SN N N NN NN

~
~

~
~

~
~

AA AT YT TR YA YN
N

NS
~

Sa|npol | 19a8f0dd Jo)
aseyd AQ UOLINGLJISIQ 14047

1001

obejuaddad
140443

J. Hihn
12 of 32

Conclusion

The data reflects the state of Project 1 before it actually became productized and there-
fore contains reduced effort figures for testing and documentation, which greatly in-
creased during the final release. There is also not any data on maintenance costs.
Therefore the two areas where Ada's strong type checking and compiler have an effect
are not reflected. In addition there was no effort to make the code portable or reusable.

Any conclusions are tentative and should be treated as hypothesis for future research.
As part of our continuing software costing analysis at JPL, two Ada projects and one
Lisp project will be surveyed during 1989 which should make it possible to better isolate
the impact of software tools and modern programming practices from other features of a
language.

Given these caveats then our tentative conclusions are the following for Ada in a proto-
typing environment.

(1) Analyst and programmer experience in Ada of three years or more could in-
crease Total Technical Productivity by 3-4 SLOC/day or a maximum of 25%.

(2) Technical experience and ability, modern programming practices and the
use of software tools are very important in achieving high programmer produc-
tivity.

(3) For any language the combination of highly capable and experienced per-
sonnel, with the discipline of modern programming practices and a sophisticated
programming environment should produce comparable levels of productivity to
that observed for Ada in this study.

(4) Effort in the three major phases of the software lifecycle appears to shift
such that time spent in design is increased and time spent in verification and
test is decreased.

J. Hihn
JPL
13 of 32

Bibliography

Boehm, B. 1981 Sofiware Engineering Economics, Prentice Hall.

Economics Group 1989 NASA Historical Database, JPL/Caltech, January
1989.

Reifer, D. 1988 Softcost-Ada: An Update, Fourth Annual COCOMO Users’
Group Meeting Workshop, Pittsburgh, Pa., Nov. 2-3, 1988

Royce, W. 1987 Estimating Ada Software Development Costs for 03
Systems, TRW Defense Systems Group, Preprint.

SORCE/Economics Group 1988 Software Productivity Analysis Database,
JPL/Caltech, 1988.

J. Hihn
JPL
14 of 32

THE VIEWGRAPH MATERIALS
FOR THE

J. HIHN PRESENTATION FOLLOW

886} ‘€l Jequede(
ABojouyds | }Jo ainyisuj eiuioge)d
AioreiogeT uoisindoid 18

allr

elloyje|\ ueys
Iyebe-qiqeH piweH
uyiH ‘W snarep

Apnig ese) v
:sisAjeuy AliAonpold epy

J. Hihn
JPL
17 of 32

PAGE_ | L INTENTIONALLY BLANK

SUOISN|OU0Y)

sisAjeuy

suwte|p epy

S108[0.1d [041U0D pUB pUBWIWO)

MaIAIBAQ) J08l0ad

sulinQO

J. Hihn
JPL

18 of 32

AnejoA Siuswalinbay
£9INPayYds

s80110BI4 bunuweibold uiepoy
S]00| 8IEM}JOS

salnquuly 109foid

8Ll punoJeuin|
Allejon auiyoey [enuUiA
,Sluressuon) abeio}s

L Siuiesuon swij
sainquny J8indwo)

aoUsIIadXT BuIYOBW [BNLIA
gousliadx3 ebenbue]
Ajigeden iswweiboid
aouslusdxy Nm%mS\
Aujqeded isAjeuy
saINquUIY [duuosiod

abenbue Juswdojersd
8zIS aseqeled
Axa|dwo?n) 8iemyos
Aljiqeliay palinbay
saInquuy 10npoid

apow juawdoiarsd

aseyd Aq umopes.q 1ioj3

Juswabeurw ySe] Wolp YoYd uoneluswa|dwi pue SMaIAISIUI WO} 108 [Bd1uyds)l
yiuow Jad sAep Bupjiom g1 Buiinsse syjuow JIom - 1so

8p02 palipowWw pue pajuayul 1o} pajsnipe
SUBWIWOD INOYIM (DOTS) 8P09 JO Saul| 92IN0S B|QBINJaXA - 82Z(S

uonduosa(g asegele(a/emyos

J. Hihn
JPL

19 of 32

g9 1%
Gl €
9¢l ¢
6°LI 8

Aep suom/Q01S 108loid
se|npow ¢ ‘syosloid ¢ ‘eseqeleq asemyos Idr

Aep y10m/D01S 01-2 Ajdrewixoidde pabeliane \\/S punolr)
Aep Yiom/Q01S G'e-G' | Ajerewixoidde pabetsne an/S 1ybiI4

sa|npow Q0| ‘syodloid g ‘eseqgeie(|Bo1I0ISIH VSVN

S8IIIAIIONPO.IH abelany

J. Hihn
JPL
20 of 32

6L} G'LE 09v°1 A ooV jelol
LE :
LLb €61 0Lt L€ aseqeleq
et
22 €Sy 852 Okt UOWIWO)
€8
Gl 14! 2L 0¢ soiydesn

alemyos waisis

S€ L9 S0t 09 0L WL
02 ve €9 9¢ e 1v0
8¥ v8 6V 82 SY ol
se ey Sve ovi Sk 0od
8t 2¢ 02 811 2L 200

ajemyos uonesyddy

(Aep yiom Ke

y /001S) (Aep 0M/D0TS) (SUIUOW MOM) (SYIUOW HIOM) (007SM) 31NPON

HANONpold Auanonpoid Hoj3 Hol3 93
uonejuswajdw 1eoIuyoa | uonejuswa|dwi |eowyoa j

ele woawdo|sasq

|0J1UOD) pUE puBlWWOY)
| osloid

J. Hihn
JPL
21 of 32

S¥Se} 0] paydleuw ||am a1am [aUUOSIa
siadojaAsp pue SIasn UsaMIaq PaISIXS UOIIEIIUNWILLIOD JU8||99Xx3
senbiuyos} pue ss160jouLD8} UMOUY PaUIGUWOD 108([0.1d

Bunse |
uofeuswnoo(

adAj0j0.4

epy

JuswuoJiaug Juswdojaaa(
| 108f01d

J. Hihn
JPL
22 of 32

ybiH saInquy 109loid

ybiH SaNQLIY |[2UU0S.Idd
|BUILLON O} MO sajnqLy J1eindwo)n
|[BUILLON O} MO sa)nNqLINYy 1onpoid

JuswiuoJIAUg Juswdo|ana(
| 108loid

J. Hihn
JPL
23 of 32

Buipo
18} pue uoljelbay

S1S00 juswdolanap Jamo| Aew/|Im epy

S}S0D sdueUBlUIBN

sjo8loid wus] Buo| ul SIS0 8|04 8)I| J8MO| [|IM BPY

swielD epy

J. Hihn
JPL
24 of 32

J. Hihn
JPL
25 of 32

swalsAs uononpoud 10}
paubisap si epy pue adAjojoid e sjuasaidal ejep ay}

Aljigeuod 10 asnas poddns 0} papuadxa Jou SEM LIOYS

sebenbue| Juaiayip WoJ}
,8p09 o saull, Buuedwod usym usye} 8q jsnw aled

|lews si azis a|dwes 8y}

9oUIS Yoseasal ainyny 1o} sasayjodAy se pamalA g pjnoys synsal 8yl

Sjeane)

m<

¢, RUAPNPo.Iy uo epy Jo 10edu

Aep/00O1S
AlAnonpoud |ejo

*9[NPOW B Ul
$8se8.I0Ul BPY JO % 8y} Sk Alanonpoud uj asealsoul [esousb e aq o) sieadde aiay|

J. Hihn
JPL

26 of 32

vav %
001 06 08 0L 09 0]°] oy 0¢ 0c¢ Ol 0
®
O o *
..
d e *
< ®

aousliadxy abenbue] pue

saoljoeld Bulweiboid uispoyy ‘sjoo] aiemyos Joj 1deoxg

paisnipy A|leiied Auainonpold

0 O I N O

Aep/D01s
A11A11onpold [ejo|

© T N O
- - ™

J. Hihn
27 of 32

gouaadx3 abenbue .o} 1daoxg
paisnipy Ananonpoud

0 © < N O

Aep/0071S
Al1A110npoud |e10 |

O© T N O
- - —

J. Hihn
JPL
28 of 32

Kep 310M/QOTIS G'EF = Auanonpoud paisnipy

Aep 31om/Q01S 9} Ayanonpoud [ejo]

(leosed) z 108loid Joj Aunonpold ebeiane sy |

Aep lom/QO1S ¥'L = Auanonpoud paisnipy

Aep 310m/QOTS 6°Lt Auanonpoud [elo|

(D pue epy) | 10eloid Jo} Auanonpoid abelsae ay]

|041U0Y) pUB pUBWILWIOY
2 1090lo14 01 pasedwod | 108loid

J. Hihn
JPL
29 of 32

| 108lo0ug
O pue epy

g 1o8loug
|eosed

SISAeUY
sluswalinbay
ubisaqg

Aieuiwijaig

ubisaq pajielag

Buipon

6¢

AR TR NN
Y., 77 722 A

AR YA YA N S NN
Y 7. 2. 7 7 7 7 7 7 A mel—l
AT T WA WL S WY

o] pue uollelbalu

y A L A

[aAa7 108loayd

sadA10}0.d |04ju0) pue puBWWOY) J0} UoNALISI] aseyd

v

7

LE

LT

AR TR

Ol

0¢

0€

oY

0G

09

0L

08

06

001

J. Hihn
JPL

30 of 32

PV &%

06

08 G9 bp Sl b 0

SJUBWSIINDaY NN

ublsaq
Adeulwl|9dd

ubisaq paliejeq

butpod []

189]
pue uoljedbajuy

NN
s

NN NS

PN

LSRR Y

s s 2

NN N A

777 AV A a,

AT NN NS

PN AR e

N N NN AT TAY

PR S s 77 LA
RN NEN LYY NN s O N
P ISP PR A b 2 2 7 7
SRR N NN AT AR
PN PN AR N AN
TARTERA AR TR A N NN S Y
PN s 2 2 2 A AN
SRR LYCTRNAN NN
£ r 7 7l 4 s 72 A ly 2 s 7 7
CCSLNEN LU NEN LRV
PRI PR R4 L LT
LN ALY AR T

%

sanNpol | 109f0dd Jo}
aseyd Ag UoLIngtdisid 340443

06

J. Hihn
JPL

abejusduad

31 of 32

140J13

1S8] pue uoljelba8lul pases.ds(]
sjuswalinbai pue ubisep pasealoy|

saseyd Juswdolansp jo 1oeduw
saoljoe.d bujwweiboid uispopy
sjuswuoliaue Buiwweiboud

sabenbue| Jaylo yum sjqissod aq pjnoys suieb Aaionpold lejiwig

sieak ¢ < sousuedxa abenbue] yum ajqissod aseasoul %G2-0l

'BpY Ul 8ousliadxa Jeak | abelsAe uo Ing eoualadxs [elaush aAISUs]Xe yIm
o|doad ajqedeo A1 pauly sey yoiym josloid mau e Jo 808|481 Bl s}nsal asay |

sSuoIsnjouo)n

J. Hihn
JPL
32 of 32

N91-10614

/s
Experiences with Ada in an Embedded System
Robert J. LaBaugh oo
Martin Marietta Astronautics Group b((l; "-) U
! 1
‘ |

Space Systems
Denver, Colorado 80201 ' 7

Introduction

This paper describes recent experiences with using Ada in a real time environment. The
application was the control system for an experimental robotic arm. The objectives of
the effort were to experiment with developing embedded applications in Ada — evaluating
the suitability of the language for the application, and determining the performance of the
system. Additional objectives were to develop a control system based on the NASA/NBS
Standard Reference Model for Telerobot Control System Architecture (NASREM) in Ada,
and to experiment with the control laws and how to incorporate them into the NASREM

architecture.

Background

The arm to be controlled has five degrees of freedom — one degree in each of the shoulder
and elbow joints, and a wrist with roll, pitch, and yaw. An Intel 80386 single board computer
in a Multibus II system was used for the controller. The board contained an 80387 math
coprocessor, two megabytes of RAM, and a single RS-232 serial port. The clock frequency
for the system was 16 MHz. Rather than just use the 80386 as a fast 8086, the 80386 was
operated as a 32 bit processor in the protected mode, which provides for segment sizes of

up to four gigabytes.

The Ada compiler selected was the DDC-I cross compiler for the 80386, which was hosted
on a MicroVAX. This compiler was targeted to a bare machine, so there was no operating
system to either provide services or detract from the performance of the system. The
runtime system supplied with the compiler provided all of the services needed to support

the features of the language, including initialization of the hardware, memory management,

R. LaBaugh
Martin Marietta
1 of 19

time management, the Ada tasking model, and interrupt handlers. An operator interface
for the application was implemented using the standard Ada Text_IO package. This package
uses the RS-232 port on the single board computer for the standard input and output of

Text _10.

Development Approach

The software development system is shown in Figure 1. It consisted of a Rational R1000,
a MicroVAX II, and a PC clone. The systems were connected via Ethernet, which was
used to transfer files between the systems. Initial program development was done on the
Rational. To facilitate code debug and checkout on the Rational, Ada routines to simulate
the hardware were developed. These were used to replace the low level hardware interface
routines. When the target hardware and compiler became available the source code was
moved to the MicroVAX. Target peculiar modifications were made to the code, such as the
specification of task entries as interrupt handlers and the hardware interface routines. The
code was then compiled and linked on the MicroVAX, and the resulting load module was
downloaded to the PC. The PC served as the controller for the in-circuit emulator, which

was used to load and control the execution of the code in the target system.

MicroVAX PC
Rational
ationa (80386 Compiler) ICE Controller
Ethernet
Robot Muttibus I 80386
Control > 80;86 SBC ——P |n-Circuit
Electronics Emulator

Figure 1. Development System

R. LaBaugh
Martin Marietta
2 0of 19

Even though the capabilities of in-circuit emulators are improving, this was a less than
optimal environment for debugging code. Having to move from one terminal to another,
moving files from one system to another, and the limitations on file names on the PC all
hinder code development and checkout. The movement is clearly toward being able to
compile, download, and debug from a terminal on the host development system. There are
some systems which currently allow this, but the targets are connected to the host by an
RS-232 line. The relatively slow download speeds limit the size of programs which can be

effectively developed using these systems.

Ada Features Used

Ada tasks and task rendezvous were used for synchronization and communication between
tasks. Task priorities were established using the priority pragma. An interrupt handler
was coded in Ada to service the timer used to provide the control loop cycle. This was
accomplished using an address clause for a task entry — which is the technique specified
in the Ada Language Reference Manual for defining interrupt handlers. The Low Level 10

package was used to communicate with the hardware controlling the joints on the arm.

There was one package where machine code insertions were used. This was used to provide
procedures to disable and enable interrupts. These routines were not really needed by the
initial application. They were used to assure safe initialization of the hardware, which
was already guaranteed by the sequencing of the initialization routines. However, these
routines become necessary as more Multibus II features are used. This is because some
logical operations, such as accessing a single Multibus II interconnect space register, require

accesses to multiple hardware ports.

Software Application

NASREM defines a layered, hierarchical control system with common interfaces between
layers. The lowest layer in the hierarchy operates at the highest frequency, with a decreasing
frequency of operation with each higher level. Ada tasks were used to implement the
NASREM layers, with the priority of the tasks decreasing with increasing levels in the

hierarchy. The requirement that the argument to the priority pragma be a static expression

R. LaBaugh
Martin Marietta
3of 19

prevented the use of a generic package in defining the NASREM levels. However this was a
minor inconvenience as there was very little code involved in defining the control structure

within a level.

The initial application concentrated on the two lowest levels of the NASREM architecture.
The servo level reads current joint positions and sends motor commands based on the
error between the current and desired position. This level was driven by a programmable
hardware clock which generated a periodic interrupt. The primitive level determines evenly
spaced points between desired end points and performs the kinematic transformations. The
elemental move level initially consisted of simple canned motion generators, and the task
level simply selected the motion to be performed. The robot control function and the
operator interface were both run on the same CPU, with a total of eleven Ada tasks in the

application.

The entire application was coded in Ada. No non-standard pragmas or special interface
routines to the runtime system were used. In addition, we were able to effectively write low
level code in Ada. This included interrupt handlers, hardware interface routines, Multibus
IT message passing routines, and control of a DMA processor. The hardware, and the code
generated by the compiler, provided more than adequate performance for the system. In
experimenting with the control laws the control loop cycle time was varied between 10 and
50 milliseconds. For most of that range all levels of the NASREM architecture were able
to complete in a single cycle. Since the NASREM architecture is set up for approximately
a ten to one ratio in frequency of operation between levels, this leaves plenty of room for

growth.

Current activity includes splitting the robot control function from the operator interface
function and executing them on two CPUs. The initial interface and communication be-
tween the processors is via shared memory. As an alternative, Multibus II message passing
will also be investigated. This is being done as an exercise in distributing the application.
Items of interest are the difficulty of implementing various communication schemes and the

relative performance.

R. LaBaugh
Martin Marietta
4 of 19

Lessons Learned

Most of the things which could be considered lessons learned are more appropriately clas-
sified as common sense. Specifically, while being able to use a host system for initial debug
and test is a useful development tool, it does not eliminate the need for low level testing
on the target system. This testing is needed to establish the correctness of the hardware-
software interface definitions, and to build confidence in both the hardware and low level
software routines. Having a set of programs to incrementally checkout the low level functions
and interface also provides the basis for trouble-shooting as problems arise. Such routines
were needed to isolate hardware failures and identify improper system initialization, which
happened if a specific sequence was not followed for powering on the electronics racks and

computers.

Another major lesson learned was that portability is not automatic with Ada. There were
two specific instances of this. The first involved differences in the tasking implementation
between the Rational and the 80386 target. Tasks of equal priority are time sliced on the
Rational, but this is not the default for the DDC-I runtime system. A task which was to
run in the background, and which checked flags in an infinite loop, was elaborated before
some of the higher priority tasks were initiated. Since the task didn’t allow for any type
of context switch, as soon as it started executing on the 80386 it kept control of the CPU,
preventing the further elaboration of the system. Inserting a delay statement inside the
loop fixed the problem. The other experience with non-portable Ada code involved a public
domain math functions library. The functions used by the application worked correctly on
the Rational. However on the 80386 system one of the functions produced erroneous results
for certain input values. It was discovered that this math package had hard coded values
for machine specific parameters. We did not try to determine if this was the cause of the
problem as an alternative math functions library was available. This does point out the

need for extensive test data, and a test mechanism, for “reusable” Ada packages.

There still seems to be a tremendous resistance to using Ada language features for embed-

ded, real-time applications. Some of this comes from “experts” who have heard Ada is not

R. LaBaugh
Martin Marietta
S of 19

efficient enough, or just cannot support various real-time or “system” functions. This resis-
tance is probably a positive sign. It used to be said that Ada was too inefficient for almost
all applications, not just real-time applications. Unfortunately system specifics, such as a
particular compiler, target, or any operating system involvement, tend to be forgotten or
ignored. There are certainly systems which cannot come close to supporting time critical
applications, but this does not mean all systems are that way. Much more surprising is
the push by some Ada compiler vendors (and, less surprising, real-time kernel vendors) to
promote special, non-Ada runtime systems. This could be seen as an attempt to distinguish
their product, or provide a higher performance system where needed. However, it could
also be viewed as an attempt to circumvent shortcomings in their runtime system imple-
mentation — which could lead to speculations of what else might be ineflicient or poorly
implemented in the system. The use of such systems greatly reduces the portability of the

code and adds another complex system which has to be maintained.

Conclusions

We were able to implement a complex real time system in Ada, and did not have to resort to
circumventing Ada language features or use a special, non-Ada run time system. This was a
result of having hardware, and an Ada compiler and runtime system, with significantly more
performance than was needed by the application. Futhermore, using the Ada tasking system
allowed the initial debug and test of the code to be performed on the host development
system, which was more accessable than the target system. This also allowed the debug
and testing to begin before the target system was available. Another advantage of using Ada
tasks and having sufficient performance margin was that it allowed the application to be
implemented primarily by junior engineers. Some guidance was provided on implementing
the interrupt handler and cyclic task execution. Otherwise they were able to use textbook
taéking solutions, such as having tasks to coordinate exclusive access to resources. All of
this indicates that as Ada compilers continue to mature the idea of leveraging of skills can

be extended to the real-time arena.

R. LaBaugh
Martin Marietta
6 of 19

THE VIEWGRAPH MATERIALS
FOR THE

R. LABAUGH PRESENTATION FOLLOW

0Qvy010D "¥3ANIA
SW3ILSAS 30VdS
dNOYO SOILNYNOYLSY VLIIIYVIN NILYVIN

ybnegeq ‘1 142qoy

W3LSAS A30A39N3 NV NI vaV HLIM S3DN3I¥3IdX3

Martin Marietta

R. LaBaugh
9 of 19

PAGE__§_ INTENTIONALLY BLANK

LED

it

SMVT T04LNOD HLIM LNIWIYIXT
VAV NI 34N1D3LIHDYVY WIYSYN NO a3svd WILSAS T04LNOD dO13IAIQ
3DNVINH0443d ININY3IL3IQ -
S3¥NLY3d IDVNONVYT ILVYNTVAT -
VAV NI NOILYDITddV A3aa3gd3 4013A3Q -
SIAILDIrd0

WYV 1090d TVLNIWIYIdX3 40 104LNOD -
NOILVIITddV G3aa3gn3

NOILDONAOYLNI

Martin Marietta

R. LaBaugh
10 of 19

ONIDONEIA ANY IDVIYILNI HO1vYHIdO ¥04 a3Isn -
0/1 DNIMDO19-NON -

ayvog NdJd NO L¥0d ¢€¢-Sd S3sn OF LX3L
JYVM140S

ANV I¥YMAYVYH 40 104LNOD 3L3TdIN0D SIAIAOHd WILSAS FWILNNY VAV -
W3LSAS ONILVY3dO ON -

ANIHOVIN 34VvE Ol 431394Vl -
JA0OW a3.10310yd 98¢08 vaAV 1-0Ad — d311dW0OD vav

140d ¢EC-SY
WVddW C -

40SSII08d0I ANV NdD 404 MIO0T1I ZHW 9T -
40SS3208d0D HLVIN 18808

Y3ILNdWOD ayvog ITONIS 98€08 13LNI — HILNdWOD L3DYVL

MVA ANV HD1Id ‘1708 HLIM LSIMM ANV ‘M0E13 "¥3ATNOHS -
WO0Q3344 40 S33Y934A IAI4 HLIM WYY 1090y

ANNOIODAMIVY

Martin Marietta

R. LaBaugh
Il of 19

HOLVINNI
98€08

»

d3T10HLNOD 32|
ad

NOY10313
N3 085S 9808 Sl
LINOHID-NI [nsnann 1 "1 TOHLNOD
10804
13INY3IHL3T
(H311dWOD 98£08)
TVNOILYY
XVAOHOIN

e —————————————————————————————————

W3 LSAS LNIWJOT1INIQ

Martin Marietta

R. LaBaugh
12 of 19

a33dS Z€2-S¥ A9 QILIWIT LNG ‘SWILSAS FJWOS 404 MON I18VIIVAV -

TYNIWY3L
INO WOY¥4 ONIDONGIA ANY ‘ONIAVOTINMOA ‘ONITIdWOD QYVYMOL ONIAOW -

1394VL NO 951934 Y04 LNIWNOYIANT TVINILAO NVHL SST1

W3ILSAS 139¥VL NI 300D 40 NOILND3X3 104LNOD ANV AVY01 Ol a3sn -«
JOLVINWNI LINDYID-NI 404 ¥3TO¥LNOD -
IN01D Dd Wdl 0L AIAOW ITNAOW avOol

W3ILSAS XVA NO G3LSOH 98€08 404 ¥FTNJWNOI SSO¥I vav -
XVYAQUDIN NO G3IXNIT ANV d31IdIN0D SSOYHD

XVAOHDIW 01 d3avOTINMOQd 3a0I 324N0S

SINILNOY NOILYINWIS HLIM Q3DV1dIY IDV4HILNI FYVMAYVYH TIAIT MO -
TYNOILYY NO LS3L ANV LNIWJOTIAIA TVILINI

HOVOdddV LNINdOT3INAIA

Martin Marietta

R. LaBaugh
13 of 19

NOILVY3IdO 1VIID0T ¥3d SISSIDIV FHYMAYVH J1dILTNI -
a3asn S3ynivad i SNAILINW JYOW SY G3a3anN -
JYVMAUVH 40 NOILYZITVILINI 34VS Y04 a3sn -
NOILVIITddV TVILINI NI d3d33N LON -
S1dNYY3LNI 379VN3I ANV 379VYSia 0L a3sn -
SNOILY3ISNI 3A0I INIHOYIN

SIDVAY3ILNI FYVMAYVH HLIM JLYIINNWINOD OL d3SN Or13AITMO1

SUSVL A3ZILI¥0Id

AYLN3I MSVL 404 ISNV1D SS3¥AAyv -
VAV Ni d3d0D ¥310NVH LdNYY3LNI

NOILVIOINNWIWOD ANV NOILVZINOYHIONAS 304 SNOAZIANIY MSVL -
SHSVL vav

a3isn sjyniviad vav

Martin Marietta

R. LaBaugh
14 of 19

d0071 TOYLNOD DNIAIMA LdNYYILNI ¥20T1D FJ4VMAAVH

SUSVL VAV 1T
ndd (3T1ONIS) INVYS NO SNOILIONNS TOYLINOD L0890 ANV IDV443ILNI 401Vd3dO

WY0443d 01 NOILOW S12313S — TIAIT ASVL -
SYOLVYINID NOILOW AINNVD FTdWIS — 13IATT IAON TVLNINITT
SNOILYWYO4SNVYL JILVINININ

‘NOILOW HLOOWS ¥04 SLNIOd G3DVdS ATNIAI SINIWYILIA — T3AIT IAILINIED *
NOILISOd a34153a ANV

INIYYND NITIMLIE ¥OuY¥3I NO @3sve SANVINNOD SYOLOW SANIS — T3A3T OAY3S -
S13A371 OML LSIMO1 NO 31VHLNIDONOD

SMSVL vaVv HLIM Q3LNIWITdINI -
3SVIYINI S1IATT SV NOILYYIdO 40 ADNINOIYL ONISYIYO3A -
S13IA3T 11V LV S3DV44ILNI NOWWOD -

JYNLIILIHOYY WILSAS 104LNOD TVIIHOYVYIIH ‘QIYIAVT -
W3IYSVYN

NOILVYDI1ddV

Martin Marietta

R. LaBaugh
15 of 19

HLMOYD FTANVH OL NOILVII1ddVY DNILNGIYLSIA NI 3SID¥IXT
ONISSVd FOVSSIW 11 SNEILTNN HLIM LNIWIYIIXT 0S1V -

AYOWIW A3YVHS VIA NOILVDINNWWOD TVILINI

FOVIY3ILNI 401Vv¥3dO

T041NOD L080Y
SNdJ OML OLNO 300D ONILLITdS 40 SS3ID0¥Ud NI

310AD O3S 07 NI 3LND3X3 OL 379V S1IAIT WIHSYN TV -
d0OT T04LNOD ZH 0§ Y04 IDNYWYO0443d I1vNdDIAY NVHL JHOW

"J13 "ONISSVd IOVSSIW 1 SNAILININ ‘431108 LNOD YING ‘TIV4YILNI JYVMAYVYH -

VAV NI NILLIYM 3Q0D .13ATT MO, »
SYWOVYHd 40 ‘STTVD WILSAS “1INYIN TVIDIdS ON -

vYav NI d3d0D NOILYDITddV JYILNT

S11NS3y

Martin Marietta

R. LaBaugh
16 of 19

1NdNi
NIVLY3ID ¥04 SLINSIY SNOINOYYI — SIUNLVYIF IDVNONVT VAV 40 3SN SA
SYILINVHYC D141D3dS INIHOVIN 'd3A0D AQYVH — AYVYHaI1 SNOILLONNS HIVIN -

WSINVHDIW 1S3L ANV VY1vVa 1S31 ONILYOddNS AIIN SIOVHIVA NIVNOA J1dand o
1394v1 NO 11nv43Ad IHL LON DNIDIS JNIL -
TYNOILYY NO SYSVL ALIMOIMd 1vND3 40 ONIDINS IWIL -
SWILSAS IWILNNY NI NOILVLNIWITdNI ONIMSVL NI SIINIH34410 -
vayv HLlIM DILVINOLNV LON SI ALINIGVLIYO0d

(NO N¥NL YIMOd) NOILVZITVILINI WALSAS ¥3dOddINI 'STUNTIV] JUVMAUVH -
SW3I1904d DNILOOHS-319n0Y L Y04 SISvE IAINOY¥d Ol d3Ad33N -

SNOILINIZ3A 3DV44ILNI 40 SSINLIIYIOD -
JYVML40S ANV IYVMAYVH IHL HLOF NI 3DN3IAIINOD aling Ol 43Q33N -

1394V1 NO ONILSIL
73A31 MOT 404 @33N FLVYNIWITI LON S30A LSOH NO 95Nd3d ANV 1S31 01 ALIEY

d3INYJV3IT SNOSS3IT

Martin Marietta

R. LaBaugh
17 of 19

Q3INIVLNIVIA 38 OL SYH HJOIHM W3ILSAS
X31dWOJ YIHLONY SAQV ‘ALITIVLYO0d SIONAIFY — IAILONA0YLYILNNO)D -

NOILVLNIWITdINI WILSAS JWILNNY YI1THL
NI SONINODLYOHS LNIAWNDYID ¥0 “LONA0Yd HSINONILSIA OL LdWILLY -

SWILSAS DNILVYIJO/STINYIN AYVANVLS-NON ONIHSNd -
SHOANIA TINYIM IWIL-TVIY ANV SHOANIA ¥3TIdWOD WOHS

(.378VSN-NON., 40 V3¥V A3Dna3y) NOIS JAILISOd -

d3YONDI 39 0L ANIL (WILSAS LIDYVL ‘YINMWOD) SIIJI1D3dS -

SNOILONNIA SWILSAS/IWIL-T¥IY SNOIMVA LYOddNS
LONNVD 40 HONON3I LN31D1443 LON SI vAV GYVIH JAVH OHM .SLY3dX3, WOYS -

(Or1aAITmon
‘SIIYLNI MSVL VIA SYITANVH LdNYYILNI ‘WILSAS IWIL NNY VAV AYVANVLS "3'1)

SNOILVYIITddY INIL
Y3y 'd30039W3 404 SIYNLYIL IDVNINYT VAV ONISA OL IINVLSISIY SNOANIWIYL

(ponunuod) gINYV3I1 SNOSSIT

Martin Marietta

18 of 19

R. LaBaugh

SW3ILSAS d3Aa3Ign3 NI a3sn 39 0L HONON3I ONIINLYIN FHV SYITIdINOD VAV

S324N0S3Y
0L $$3DJV IAISN1IXT — SNOILNTOS ONINSYL MO00481X3L, 35N 01 319V

NOI1vd3dO
MSYL JI1DAD ANV ¥31ANVH LdNYYILNI ONILNIWITdNI 404 G3AINOY¥d IDNVAIND -

NOILYDI1ddV FHL LNIWITdWI
0L SYIANIONI HOINAF AIMOTTV SIUNLYI4 vay 40 3SN ANV NIDYVIN IDINVINYO4d3d

431T¥v3 I1GVIIVAY -
WILSAS 1394V1L IHL NVHL 319VSSIDIV JUONW -

W3ILSAS LSOH
JHL NO 1S3L ANV 5n93a TVILINI QIMOTTV WILSAS IWILNNY VAV QYVANYLS DNISN

JONVWHO4¥3d LNIIDIF4NS HLIM d43T11dNOD ANV FYVMAYVH -
VYav NI A13¥ILNI QILNIWITdNI WILSAS IWIL-TVIY XITdWOD

SNOISNTIONOD/AYVININNS

R. LaBaugh
Martin Marietta

19 of 19

PANEL #4

TOOLS

D. Drew, Unisys
P. Usavage, Jr, General Electric
J. F. Buser, Software Development Concepts

N91-10615

A Practical Approach to ObJect Based Requirements Analysis Av‘f
Daniel W. Drew and Michael Bishop

Unisys, Houston Operations Division
600 Gemini Mail Code UO4C
Houston, Tx. 77058-2775
(713)-282-3664

Introduction

In the teaching of mathematics, problem statements are often used to provide exercises which
require the students to apply the knowledge learned. The student must read a paragraph and
determine first what the problem is, then apply the appropriate equation to find the answer. System
development is analogous to solving math problem statements. There is the problem statement
(requirements) which must be understood so that the right equation (design) can be applied for the
solution.

If the study of mathematics emphasizes only the study of equations and how they are derived, the
student will be ill-equipped to use that knowledge in practical applications. Similarly, design
methods which do not have supporting methods for understanding requirements will prove difficult
to use in practical system development.

The use of objects in design methodologies has provided a mechanism whereby software engineers
can take fuller advantage of software engineering principles. However, these concept are just
beginning to reach their full potential as we move them earlier into the lifecycle.

This paper presents an approach, developed at the Unisys Houston Operation Division, which
supports the early identification of objects. This "domain oriented"” analysis and development
concept is based on entity relationship modeling and object data flow diagrams. These modeling
techniques, based on the GOOD methodology developed at the Goddard Space Flight Center [4],
support the transtation of requirements into objects which represent the real-world problem
domain. The goal is to establish a solid foundation of understanding before design begins, thereby,
giving greater assurance that the system will do what is desired by the customer. The transition from
requirements to object oriented design is also promoted by having requirements described in terms
of objects.

Presented is a five step process by which objects are identified from the requirements to create a
problem definition model. This processinvolves establishing a base line requirements list from which
an object data flow diagram can be created. Entity-relationship modeling is used to facilitate the
identification of objects from the requirements.

The paper concludes with an example of how semantic modeling may be used to improve the entity-
relationship model and a brief discussion on how this approach might be used in a large scale
development effort.

D. Drew
Unisys
1 of 32

A Practical Approach to Object Based Requirements Analysis

1.0 Approach Overview

Following the principles of software engineering promotes a more pragmatic approach for system
development. It requires a change in the overall concepts of how systems are created as well as new
analysis and design methodologies.

1.1 Domain Oriented Development

For a design to be successful, there must be an understanding of the problem itis intended to solve.
All too often problem definition is established in just enough detail to begin design and evolves as
the design evolves. This can lead to unstructured systems which are hard to implement and
expensive to maintain. To eliminate this problem software development can be divided into the
problem and solution domains. The problem domain provides the foundation for all solution
domain activities. A greater discipline isintroduced into development giving greater assurance that
the requirements (problem) are understood before a design (solution) is attempted.

Activities included in the problem domain are requirements generation and requirements analysis.
The end product of requirements analysis is a problem definition model. This model becomes the
foundation for all solution domain activities.

Activities included in the solution domain are preliminary design, detail design, code, and test. The
end product is a delivered system which conforms to requirements.

DOMAIN - ORIENTED DEVELOPMENT

PROBLEM DOMAIN SOLUTION DOMAIN

DESIGN
ANALYSIS CODE
TEST

REQUIREMENTS DELIVERED SYSTEM

|

1.2 The Mechanics of Requirements Analysis

Requirement analysis is concerned with establishing what a system is to do. Thisinformation must
be documented in a form easily understood by all parties involved in development. The process for
understanding a set of requirements requires an ordered set of steps which clarify original
requirement statements and allow key information to be identified.

D. Drew
Unisys
2 of 32

A Practical Approach to Object Based Requirements Analysis

The remainder of this paper will show in detail an approach which is made up of the following steps:

Step 1: Compile a notebook containing all requirement statements and information from
other sources which might be pertinent to the problem.

Step 2: Rewrite the information from the notebook into concisely stated sentences. This
establishes a baseline requirements list (BRL).

Step 3: Develop a static model of the problem from the BRL using entity relationship
modeling. This model will facilitate the identification of objects.

Step 4: Identify the objects and develop a dynamic model of the problem from the entity
relationship model using an object data flow diagram (ODD).

Step 5: Reorganize the BRL so that the statements are grouped by object.

SUPPORT FOR PROPER DESIGN
SOLUTION DOMAIN

<D
ot O
lé % I

000 CODE TEST DELIVERED SYSTEM
PROBLEM DOMAIN
PROBLEM
MODEL € e REOS.
BRL
ER oDbD

| A

2.0 Step 1: Compiling an Information Notebook

Complete requirementsinformation is essential in order to create the system the customer really
wants. The purpose of step one is to gather all information which might have any possible bearing
on what the system is to do. The actual process for this step will vary as to the sources of information
available. For entirely new development projects, this is the initial step of requirements generation.
information must be compiled from many different sources. For enhancements to an existing
system, this step is the identification and collection of requirements pertinent to the enhancements.
Information sources would be the existing requirements document, design specifications, and
interviews of current users and maintenance personnel. The end resuit is to have all the information
available for design gathered in a single reference.

D. Drew
Unisys
3 of 32

A Practical Approach to Object Based Requirements Analysis

This approach was deveioped for a project which had an existing requirements document. The
document was old and the system had undergone several major revisions. The notebook contained
pages from the requirements document, information from a system closely related to the one being
redesigned, and notes given by experts in the application. The end result was a collection of all
available requirements information which then served as a single reference for analysis and design.

3.0 Step 2: Establishing a Baseline Requirements List

The resultant notebook contains all the information needed to create a model of what the system is
to do. However, there is no meaningful structure. Itis very difficult to determine: if the information
is complete, if there is information that is not needed, or how the pieces of information relate to
each other. A good organization of requirements is necessary in order to facilitate the extraction of
entities, relationships, and attributes from the requirements and to develop the dynamic problem
domain definition. The Baseline Requirements List (BRL) provides this needed structure. Each
statement in the notebook is rewritten in a traditional "X shall Y" format where "X" is a noun or
noun phrase and "Y" is some action the noun will perform. Rewriting in this form will force a
greater understanding of each requirement piece. Ambiguous statements and statements which
have no impact on what the system is to do can be easily recognized. Having all requirements stated
as cause and effect also provide a solid platform for system testing.

ORGANIZE REQUIREMENTS INFORMATION

REQS.

X SHALLY

BRL X SHALLY

X SHALL Y

4.0 Step 3: Developing a Static Problem Definition Model

A static model of the problem is the first component of the problem definition model. Its purpose is
to give structure to the requirements information that will facilitate the identification of the
dynamic properties of the system. A static model represents all the possible entities, with their
attributes and relationships, described by the BRL. The development of a static model based on the
requirements is an information representation problem. Therefore, it is reasonable to borrow
modeling techniques from the DBMS world. Entity relationship modeling has been recommended
by Mike Stark and Ed Seidewitz of the Goddard Space Flight Center [4] and Dr. Charles McKay of the
University of Houston at Clear Lake [2] as an appropriate tool for the structuring of requirements
information.

D. Drew
Unisys
4 of 32

A Practical Approach to Object Based Requirements Analysis

Issues of completeness in requirements can be addressed with this model. Incomplete requirements
appear as dangling entities which have no relationships or as relationships without clearly defined
entities. An entity without relationships may also indicate a requirement statement which does not
belong to the problem. This type of inconsistency is identified and resolved in an iterative process of
reviewing the requirement statements which make up the part of the entity-relationship model in
question until all unusual model structures are resolved.

CREATE THE STATIC MODEL

X SHALLY

X SHALLY
X SHALLY

BRL E-R MODEL

4.1 Entity-relationship Modeling

The approach promoted by this paper for entity-relationship modeling consists of the entity-
relationship model creation phase, the entity dictionary, which provides entity definitions which will
be used throughout the software lifecycle, and entity-relationship diagrams, which can be used to
graphically depict portions of the entity dictionary. Object data-flow diagrams, which depict the
dynamic problem definition are generated from the entity-relationship model and will be addressed

in section 5.0. The remainder of this section presents in detail how an entity-relationship model is
developed from the BRL.

A common example, a subset of a student registration system, will be presented with most of the
topics in this section and in section 5 in order to help in understanding the concepts. The example
will have the following requirements:

1. The system shall provide the capability to enter and maintain information regarding students.

2. The system shall provide the capability to enter and maintain information regarding the
courses in which students are enrolled.

3. Student information shall include the student's name, age, major and social security number.

4. Course information shall include the course's name, department, room number, meeting time
and days, name of the professor teaching the course, a list of students enrolled in the course,
the number of students currently enrolled in the course and the maximum number of students
allowed in the course.

D. Drew
Unisys
S of 32

A Practical Approach to Object Based Requirements Analysis

5. Acourse shall be closed when the number of currently enrolled students reaches the
maximum number of students allowed in the course. Otherwise, the course shall be
considered open.

6. Students shall be allowed to enroll in an open course.
7. Students shall not be allowed to enroll in a closed course.

8. Thesystem shall accept registration requests containing the name of a student and the name
of the course in which he/she wishes to enroll.

9. Registration requests shall be processed in order to determine whether or not a student may
enroll in the requested course.

4.2 Entity-Relationship Model Creation

The entity-relationship model creation phase consists of extracting entities, attributes and
relationships from the requirements. During this phase, the requirements are assumed to be in the
form of the BRL discussed in section 3.0.

4.2.1 Entity Extraction

Entities will appear as nouns in the requirement statements. Different types of noun phrases reveal
different types of entities [3]. Common nouns, such as “terminal”, "student” or "message”, name a
class of entities. Mass nouns and units of measure, such as "water", "matter” or "fuel”, name a
quality, activity, quantity or substance of the same. Proper nouns and nouns of direct reference, such
as "my terminal”, "George" or "syntax error advisory message", name specific instances of an entity
class.

The requirements will not necessarily name all of the entities in the problem domain. Related
entities may have to be found by looking through documentation, talking to people who have some
expertise in the area, etc. For example, suppose that the problem domain consists of a bucket
containing different types of fruit. The requirements may state that the job is to remove the apples
and oranges from the bucket and place them in different piles. The entities in this problem domain,
as shown by the requirements, are the apples, oranges and the bucket. However, there are other
kinds of fruit that have to be considered when removing the apples and oranges (i.e. they must be
discarded). Those other fruits are part of the problem domain and therefore are entities in the
problem domain.

There is another case in which entities are not explicitly named in the requirements. Suppose that
the requirements in the apples and oranges problem also state that someone is to be notified when
a spoiled apple is found in the bucket. This new requirement introduces two new entities, a spoiled
apple and a notification that a spoiled apple has been found. Thereis a gapin the problem domain
model between the spoiled apple and the notification of the spoiled apple. This gapis filled by an
entity that represents the event that is characterized by finding the spoiled apple. The event entity is
related to the notification entity in that someone is to be notified in the event that a spoiled apple is
found.

D. Drew
Unisys
6 of 32

A Practical Approach to Object Based Requirements Analysis

Entities are either internal or external. Internal entities have an existence only within the scope of
the problem domain. External entities have an existence outside the scope of the problem domain.
The concept of internal and external entities is easier to consider if the problem domain is thought of
as a "black box." Internal entities cannot be seen outside of the box but external entities can be seen
entering or leaving the box.
In the student registration example, the requirements yield the following entities:

From requirement 1: Student

From requirement 2: Course, Student

From requirement 3: Student

From requirement 4: Department, Professor, Course__Roster, Course

From requirement 5: Course, CIosed_Course, Open_Course, Student

From requirement 6: Student, Open_ Course

From requirement 7: Student, Closed__Course

From requirement 8: Registration Request

From requirement 9: Course, Registration_ Request, Student
The Course_ Roster in requirement 4 is the list of students enrolled in a course.

4.2.2 Attribute Extraction

Attributes usually appear in the requirements as information concerning entities. The following
attributes are named in the requirements:

Student: Student_ Name, Age, Major, SS_ Number

Course: Course_ Name, Current_Size, Max_Size, Time,
Days,Room_Number,Professor__Name, Department Name

Professor: Professor__Name
Department: Department__Name
Registration__Request: Student Name, Course_ Name

4.2.3 Relationship Extraction

Relationships appear in the requirements as associations between pairs of entities, entities and
attributes or relationships and attributes. The student registration requirements show the following
relationships:

Requirement 2: Is_EnrolIed__In (1:m)
between Student and Course.

D. Drew
Unisys
7 of 32

A Practical Approach to Object Based Requirements Analysis

Requirement 4: Includes (1:1)/Is A Part Of(1:1)
between Course and Course Roster;
Includes (1:m)/ls A Part Of (m:1)
between Department and Course, Professor;
Is A List Of(1:m)/ls A Member Of(m:1)
between Course Roster and Student;
Teaches (1:1)/Is “Taught By(1:1)
between Professor and Course.

Requirement 5: Is A Type Of(1:1)
between Closed Course and Course,
between Open "Course and Course;
Is_An Instance Of(1:1)
between Course and Open_ Course or Closed Course.

Requirement 6: May Enroll In(1:m)
between Student and Open_Course.

Requirement 7: May_Not_EnrolI_In (1:m)
between Student and CIosed_Course.

Requirement 9: References {1:1)/ Is_Referenced_By (1:m)
between Registration_Request and Student,
between Registration_Request and Course.

Aslash between two relationship names indicates a pair of symmetric, oppositely-directed
relationships. In requirement 4, Course includes Course Roster and conversely, Course_ Rosterisa
part of Course. The mapping class of the relationship is indicated in parentheses.

4.3 Entity Dictionary

The entity dictionary provides a means of describing the entities that are part of the problem
domain. A data structure that is useful for representing the entity dictionary is the frame [4], a form
of knowledge representation developed by Marvin Minsky. A frame is a generalized property list
containing a list of symbols with their associated property names and values [5].

The following is an example of entity entries in the student registration entity dictionary.

Closed Course (Entity)
Ragmt Numbers 5, 7
Scope External
Is_A_Type__Of Course

Course (Entity)
Attributes Course Name, Department Name, Room Number, Time, Days,
Professor Name, Current Size, Max Size
Rgmt Numbers2, 4,579 - -
Scope External
Is Taught By Professor
Is__ A Part Of Department
Is_ An_Instance Of Open_ Course, Closed_ Course

D. Drew
Unisys
8 of 32

A Practical Approach to Object Based Requirements Analysis

Is__Referenced__By Registration Request
includes Course Roster

Course Roster (Entity)
Rgmt Numbers 4
Scope Internal
Is A Part OfCourse
Is:A:List:Of Student

Department (Entity)
Attributes Department Name
Rgmt Numbersd4
Scope External
includes Course, Professor

Open Course (Entity)
"Rgmt Numbers5, 6
Scope External
Is A Ty pe_Of Course

Professor (Entity)
Attributes Professor Name
Rgmt Numbers4
Scope External
Teaches Course

Is__A_Part__Of Department

Registration Request (Entity)
Attributes Student Name, Course Name
Rgmt Numbers8,9 -
Scope Internal
References Student, Course;

Student (Entity)
Attributes Student Name, Age, Major, 5S_ Number
Rgmt Numbers1,2,3,5,6,7,9 -
Scope External
Is Enrolled InCourse
IsT A Member Of Course Roster
May Enroll InOpen Course
May Not Enroll InClosed Course
|s_ﬁfereﬁzed_8-y_RegistratiBﬁ_Request

The entity dictionary can be extended to include attributes. The following is an example of some of
the attribute entries in the student registration entity dictionary.

Course Name (Attribute)
s An Attribute Of Course
Rgmt “Numbers 4,8
Domain String

Days (Attribute)
Is An Attribute Of Course

Rgmt “Numbers4
- D. Drew
Unisys
9 of 32

A Practical Approach to Object Based Requirements Analysis

Domain Character
ValuesM, T, W, R, F, MWF, TR, MW

Student Age (Attribute)
Is_An Attribute Of Student
Rqmt Numbers3
Domain Integer
Range 16..100

Time {Attribute)
is An Attribute Of Course
Rgmt "Numbers4
Domain Character
LengthS
Range 08:00..19:00

4.4 Entity-Relationship Diagrams

Entity-relationship diagrams are used to graphically depict a part of the problem domain. Attempts
were made to split the problem domain into parts by using a levelling technique in which the upper
levels in the problem domain consist of "aggregate entities" with the actual problem domain
entities at the lower levels. Unfortunately, there was not much progress in this endeavor and
therefore a single-level description of the problem domain was created. Since a diagram showing
the entire problem domain woul!d be cumbersome, it is better to use the entity dictionary as the
problem domain definition with entity-relationship diagrams being generated to map parts needing
greater clarification. [4].

In the entity-relationship diagram, entities are represented by rectangles and relationships by
diamond-shaped boxes [1]. Attributes are listed next to the rectangle representing the entity. The
arrows indicate the direction of relationships. A double-h aded arrow indicates the 1 :m, m:1orm:n
mapping class.

Entity-relationship diagrams can be generated in order to graphically map the problem domain onto
one or more requirements or to show the problem domain from the perspective of a particular
entity. In the latter application, it is useful to state the “order" of the diagram. A first-order entity-
relationship diagram shows the central entity (the entity from whose perspective the problem
domain is being viewed) and its relationships to surrounding entities. A second-order diagram
shows the central entity, its relationships to surrounding entities and the relationships of each of the
surrounding entities to its surrounding entities.

Sample entity-relationship diagrams for the student registration system are shown in appendix A.
5.0 Step 4: Developing a Dynamic Problem Definition Model

The second and concluding component of the problem definition model is the dynamic model of the
problem. Itis through this model that data flow and control, as described by the requirements, is
represented. An object data flow diagram (ODD) is used to model the dynamic properties of the
problem [4]. An ODD is very similar to a data flow diagram from Yourdon structured analysis
techniques. The chief difference lies in what the bubbles represent. For an ODD the bubbles are
objects. Since data is encapsulated in objects, there will not be any data stores.

D. Drew
Unisys
10 of 32

A Practical Approach to Object Based Requirements Analysis

The remainder of this section will present in detail how an ODD is derived from an entity-
relationship model.

CREATE THE DYNAMIC MODEL

ENTITY
RELATIONSHIP
ATTRIBUTE

E-R MODEL

5.1 Identifying Problem Domain Objects

An object is a unique instance of an abstract data type which is a set of data and operations
associated with that data. In order to identify the objects in the problem domain, first find all of the
major abstract data types apparent in the problem domain and use an object to manage each one.
The abstract data types are represented by entities that do not have anIs A Type Of,

ls An Instance Of,Is A List Oforls A Set Ofrelationship toanother entity. These
entities are at the highest level of abstraction for entities of a particular type. In the student
registration problem, those entities are Course, Department, Professor, Registration Request and
Student. Each one of these entity classes will have an object to manage it. These candidate objects
are Course_ Folder, Department _ Folder, Professor Folder, Registration and Student__ Folder.

The next step is to find all entity classes associated through thels A Type Of, Is A List Ofor
Is A Set Of relationship with the entity classes found in the first step. Inthe example, -
Open Course and Closed Course are associated with Course through thels A_ Type of
relationship and Course Roster is associated with Student via thels_ A List Of relationship. The
following objects and associated entities can be identified thus far: ~ -

Course_FoIder: Course, Open_ Course, Closed Course
Department Folder: Department

Professor_ Folder: Professor

Registration: Registration Request

Student_ Folder: Student, Course_ Roster

D. Drew
Unisys
1l of 32

A Practical Approach to Object Based Requirements Analysis

The entity classes listed for each object represent the abstract data types provided by that object. At
this point, it is possible to determine the set of requirements satisfied by each object. Thisis done by
consulting the entity dictionary and finding the requirement statement numbers for each of the
entities associated with each object. Applying this process to the five objectsin the student
registration system shows the requirements satisfied by each object:

Course_ Folder: Requirements 2,4,5,6,7 and 9
Department_ Folder: Requirement 4

Professor_ Folder: Requirement 4

Registration: Requirements8 and 9

Student_ Folder: Requirements 1,2,3,4,5,6,7and 9

The requirement sets for each object are not disjoint. The shared requirements (numbers 2, 4, 5, 6, 7
and 9in our example) describe the relationships between entities of different types. These
relationships, in turn, describe the interfaces between different objects.

In order to complete the definition of the problem domain objects, find all relationships between
entities of different types and add each member of the corresponding entity pairs to the appropriate
object. For example, because of the relationship “Studentis Enrolled In Course", thereisan
interaction between the Student Folder and Course Folder objects. To show this interaction, add
the entity Student to the Course ~Folder object and Course to Student Folder. One exception to
this procedure occurs when one member of the entity pair is a generalized entity class. An example
of thisis the relationship "Student May Enroll In Open Course”. Since "Open Course

Is__A_ Type_Of Course”, add Course to Student Folderinstead of Open Course. This procedure
resultsin the following set of objects and associated entities: -

Course_ Folder: Course, Open__Course, Closed Course, Cou rse_ Roster, Student,
Department, Professor, Registration Request

Department_Folder: Department, Course, Professor
Professor_Folder: Professor, Department, Course
Registration: Registration_Request, Student, CourseStudent, Cou rse_ Roster,

Course, Registration_Request

Having identified the problem domain objects and their associated entities, an object data-flow
diagram can be generated.

5.2 Generating Object Data-Flow Diagrams

Generating an object data-flow diagram based on a set of problem domain objects is simply a matter
of finding entities common to pairs of objects. For example, the entities that Course Folder and
Student Folder have in common are Student, Course Roster and Course. Those common entities
represent interfaces between Course Folder and Student Folder. On the object data-flow
diagram, the interfaces are represented by drawing a line between the two rectangles representing
the objects and labeling the line with the names of the common entities. The object data-flow
diagram representing the objects from section 5.1isin Appendix B.

D. Drew
Unisys
12 of 32

A Practical Approach to Object Based Requirements Analysis

The problem domain objects identified can be formally documented (in terms of the entities used
and produced) by adding them to the entity dictionary:

Course Folder (Object)
Rqmt Numbers2,4,5,6,7,9
Uses Department, Course Roster, Student, Registration Request, Professor
Produces Course - -

Department Folder (Object)
Rqmt Numbers4
Uses Professor, Course
Produces Department

Professor Folder (Object)
Rgmt Numbers 4
Uses Department, Course
Produces Professor

Registration (Object)
Rgmt Numbers8,9
Uses Student, Course
Produces Registration Request

Student Folder (Object)
Rqmt Numbers1,2,3,4,5,6,7,9
Uses Course, Registration Request
Produces Student, Course_ Roster

5.3 Object Names

The names given to objects play a key role in the development and understanding of the ODD.
Naming objects is possibly the most difficult task in requirements analysis. The objects supply the
framework for the representation of information and the eventual design. Therefore, their names
must convey a concise meaning of the abstraction.

Object names are always nouns or noun phrases. This facilitates using the objects as a structure
which can be used to explain action. It should be obvious from the name what real world object is
represented. Itis very difficultif notimpossible to pick object names which do not bias design
toward a particular direction. Therefore, this fact must be understood and preconceived notions
must be addressed when a name is chosen. The name must be broad enough to encompass all the
details associated with an object. Operations found within an object should not contradict the
implied meaning of the object's name.

6.0 Step 5: Reorganization of the BRL

The entity-relationship model and ODD provide a complete problem definition model. Furthermore,
the ODD serves as a platform to launch into an object oriented design. The last step for the probiem
domain segment of development is to go back and group the statements in the BRL under headings
which represent the objects they support.

D. Drew
Unisys
13 of 32

A Practical Approach to Object Based Requirements Analysis

The objects are the main organizational structure for the system. Re-grouping the requirements will
help the designers to find the additional detail needed to continue development. It will help the
testers create test procedures aligned along object boundaries. It will simplify the traceability of
requirements to design for the designer, tester, and maintainer. In short, having the requirements
document reflect the structure of the emerging design will provide a high level of continuity
throughout the system's lifecycle.

7.0 Enhancements to Problem Definition Modeling

Requirements analysis is a specific application of an information representation problem. As current
modeling techniques evolve, it is reasonable to expect improvements in the approach takenin
problem definition modeling. Semantic data models are currently being introduced for use in
modeling data bases. They provide a richer medium for the representation of information. This
section describes how semantic modeling can be used to enhance the entity relationship model.

Semantic data models allow designers to represent the entities of interest in an application in a way
that more closely resembles the view the user has of these entities [6]. Semantic data models provide
abstraction constructs that can be used to capture some of the meaning of the user application.

The semantic entity-relationship model introduced in this section features the abstraction constructs
provided by the semantic and hyper-semantic [6] data models and allows the analyst to further
define the problem by stating the meaning of relationships between entities in the problem domain.

7.1 Modeling Primitives

Modeling primitives are atomic relationships whose meanings cannot be defined as a composition of
other meanings. They form the basis on which other relationships can be defined. Modeling
primitives can be grouped into relationship classes which correspond to the abstraction constructs of
the hyper-semantic data model. The modeling constructs of the hyper-semantic data model and
their associated relationship names include [6]

Generalization: Similar entities are abstracted into a higher level entity-class. Relationship:
Is_A_Type Of.

Classification: Specific instances are considered as a higher level entity-class. Relationship:
Is_An_Instance Of.

Aggregation: An entity is related to the components that make it up. Relationship:
Includes/Is_ A _Part_Of.

Set Membership: Several entities are considered as a higher level set entity-class.Relationships:
Is_A_ Set Of/ ls_A _Member Of.

List Membership: Several entities are considered as a higher level list entity-class.
Relationships: Is_A_List Of/ Is_A_Member Of.

Constraint: A restriction is placed on some aspect of an entity or relationship. Relationship:
Is_A__Constraint_On.

D. Drew
Unisys
14 of 32

A Practical Approach to Object Based Requirements Analysis

Heuristic: An information derivation mechanism is attached. Relationship:
Is_A_Heuristic_ On.

Synchronous Temporal: Specific entities are related by synchronous characteristics and
considered as a higher-level entity-class. Relationships: Is_A__Predecessor__Of/
Is_A_Successor_Of.

Asynchronous Temporal: Specific entities are related by asynchronous characteristics and
considered as a higher-level entity-class. Relationships: Initiates/Is_ Initiated_ By.

Equivalence: Specificinstances of an entity-class are asserted to be equivalent. Relationships:
Is Equivalent_To.

The slash within the relationship names indicates two oppositely-directed relationships.
7.2 Semantic Relationship Definition

The semantic entity-relationship model provides a construct that allows the analyst to define the
meaning of a relationship. This construct can be used to define a relationship in terms of other
relationships and modeling primitives and to define the restriction class of arelationship.

A relationship between entity classes A and B is restricted if instances of type A may only be related
to certain instances of type B based on a condition. The relationship is existence restricted if
instances of type A may only to be related to those instances of type B for which they depend on
their existence [7].

In order to walk through a short example of a relationship definition, consider the is Enrolled In
relationship between Student and Course. The objective is to state what is meant by the phrase, "a
student is enrolled in a course." The course roster may be used in order to determine if a particular
student is enrolled in a particular course. Remember from section 4.2 that a course roster is a list of
students enrolled in a course. Therefore, a student is enrolled in a course if the student ison the
course roster. The relationship is written in the following form using the semantic relationship
definition construct:

entity class Course, Student, Course__ Roster;
relationship Is__Enrolled _In (entity__instance, entity _instance);

Studentis Enrolied InCourseif
CRis An Instance OfCourse Rosterand
Course Includes CR and -
Student Is__A_lVIember_Of CR;

The relationship statement declaresis Enrolled__Inasa relationship between two entity instances.
Therefore, the definition of theIs__Enrolled _In relationship between Student and Course is
concerned with an instance of Student and an instance of Course.

D. Drew
Unisys
15 of 32

A Practical Approach to Object Based Requirements Analysis

The first clause within the relationship definition, "CRIs An Instance Of Course Roster",
defines an entity CR which is an instance of entity class Course Roster. The second dlause, "Course
Includes CR", associates CR with the particular instance of Course with which the relationship is
invoked. The third ciause states that the instance of Student with which the relationship is invoked
must be a member of the course roster CRin order for the Is Enrolled In relationship to be
satisfied.

The relationship is invoked by replacing Student and Course with appropriate instances, for example
"George Is_Enrolled InPhysics”. In thisinvocation of the relationship, CR is the course roster for
Physics and the relationship is satisfied if George is on that roster.

The semantic relationship definition construct can be thought of as "infix Prolog"”. In fact, it is rather
easy to convert the above example into Prolog:

is enrolled in(Student, Course):-

" is an instance of (CR, Course Roster),
incfludes (Course, CR), -
is_a_mem ber of (Student, CR).

If one could "code” the modeling primitives in Prolog and generate the appropriate Prolog
declarations, it would be possible to execute a problem domain model. This may be useful in
ensuring that the problem domain model is correct before going on to create objects and initiate
design. This process is analogous to executing a design before implementation.

8.0 Considerations For Large Projects

This paper is based on a small project projected to be only 10,000 lines of code. Animportant
question to ask is, "How will this approach support the development of a large system of 500,000
lines or greater?"

The basic approach is good for any size project. What complicates larger systems is the large number
of requirements to be considered. It may not be practical or even possible to examine all the
requirements at the same time as was done for this project.

To resolve this problem, approach the requirements as layers of abstraction. Read through the
document and extract those statements which define a very high level view of the system. Apply the
approach presented in this paper to produce a problem definition model for this high level
abstraction. Now begin an iterative process of stripping off layers of detail for each object identified
in the previous level of abstraction and create a problem definition model. Use the approach
presented in this paper for each iteration.

As each layer of abstraction is added to the model, check the preceding layer to assure that the
objects and interfaces already established still hold true. If there are inconsistencies, make the
necessary adjustments and continue with the process.

D. Drew
Unisys
16 of 32

A Practical Approach to Object Based Requirements Analysis

Summary

Students who spend all their time understanding math equations without applying them to problem
statements will be ill-equipped to solve real world problems. System developers who possess the
latest techniques in system design but have inadequate approaches to requirements analysis are
destined to create wonderful designs which solve the wrong problem. The approach in this paper is
a beginning to the application of modern analysis techniques rooted in the theoretical foundation
of software engineering. A pragmatic approach allows for better conformance to those
requirements in design. A model based on objects permits closer adherence to software
engineering principles earlier in the lifecycle. Itisnot always easy to see objects in the requirements.
Use of the entity-relationship model eases this problem by structuring the informationin a form
more conducive to object recognition.

D. Drew
Unisys
17 of 32

A Practical Approach to Object Based Requirements Analysis

Appendix A. Sample Entity__Relationship Diagrams

E-R DIAGRAM FOR STUDENT REGISTRATION REQUIREMENT 4

D. Drew
Unisys
18 of 32

Depart-
ment
Course Teaches Professor
Stu_dent Student
List Is A List
of

A Practical Approach to Object Based Requirements Analysis

First order diagram for entity Student

Student Name
Age Student Is Student
Major A Member Of List
SS__Number
Is Registra-
Referenced fion
By Request
May May
Enroll Not Enroll
In In
Course Open Closed
Course Course
D. Drew
Unisys

19 of 32

A Practical Approach to Object Based Requirements Analysis

Second order diagram for entity Student

Student Name P Is
Age Student Student
Major — Member Of List
SS__Number
Is Registra-
Referenced tion
B
y Request
May Is
Not Enroll References A Part Of
In
Open Closed —>| Course | Is D -
Course Course A Part Of ;2?1?
"
Is Is Is Is Professor
A Type Of A Type Of An Instance Taught By
of
D. Drew

Unisys
20 of 32

A Practical Approach to Object Based Requirements Analysis

Appendix B. Sample Object Data-Flow Diagram

Object data-flow diagram for student registration system

Depart-

Course, Department

ment -«
Folder

Professor,
Departme

A

Course, Professor

Course
Folder

nt

vy

Professor
Folder

Student__List

11

Registration__

Request

Student, Course
Student [€ Student,
Folder Course,
e Registration__Request
Student, Course,

Y Y

Registra-
tion

D. Drew
Unisys
21 of 32

A Practical Approach to Object Based Requirements Analysis

References

(1

(2]

(3]

(4]

(5] Winston, Patrick H. and Horn, Berthold K. P., Lisp, Addison-Wesley Publishing Company, 1981.

(6] Potter, Walter D. and Trueblood, Robert P., “Traditional, Semantic, and Hyper-Semantic
Approaches to Data Modeling”, Computer, June 1988, pp. 53-63.

(71 Webre, Neil W., "An Extended Entity-Relationship Model And Its Use On A Defense Praject”,
Entity-Relationship Approach To Information Modeling And Analysis, ed. by Peter P. Chen,
Elsevier Science Publishing Company, 1983.

D. Drew

Unisys

Chen, Peter P., "The Entity-Relationship Model - Toward a Unified View of Data", ACM
Transactions on Database Systems, Vol. 1, No. 1, March 1976, pp. 9-36.

McKay, Charles W., “A Perspective and Overview of Software Engineering”, a seminar
sponsored by the Software Engineering Research Center at the University of Houston at Clear
Lake.

Booch, Grady, Software Engineering With Ada, Second Edition, The Benjamin/Cummings
Publishing Company, Inc., 1987.

Stark, Mike and Seidewitz, Ed, “Towards A General Object-Oriented Ada Lifecycle", Goddard
Space Flight Center, Greenbelt, Md., March 1987.

22 of 32

A Practical Approach to Object Based Requirements Analysis

Biographical Sketch

Daniel Drew has worked 13 years in the computer industry. After graduating withaB.S. degree in
Computer Science from Texas A&M University, he spent 10 years developing Supervisory, Control,
and Data Acquisition (SCADA) systems for oil pipeline control and automated oil field production.
He has spent the last three years in Aerospace as a system designer and currently as section
supervisor at the Unisys, Houston Operations Division. The section he supervises is working the first
Ada pilot project attempted at the Unisys Houston site. Mr. Drew is a member of the [EEE Computer
Society, Clear Lake Chapter of SigAda, and National SigAda.

Michael Bishop has worked as a programmer and systems analyst in the aerospace industry for over
four years. Mr Bishop is currently employed at the Unisys Houston Operation Division where he has
been developing an entity-relationship methodology suitable for a wide range of applications as
part of an Ada pilot project. Previously, Mr. Bishop worked at Ford Aerospace and Unisys on the
MAST project, a database application concerned with the management of Space Shuttle downlink
and uplink data. Mr. Bishop received his bachelor's degree in Computer Science in 1984 from the
University of Houston and is currently pursuing a master's degree at the University of Houston's Clear
Lake campus.

D. Drew
Unisys
23 of 32

THE VIEWGRAPH MATERIALS
FOR THE

D. DREW PRESENTATION FOLILOW

AMGE_Z Y/ INTENTIONALLY BLANK

SISATVYNY Q3Sve 103rg0 8861 ‘0€ JOQWIAON

D. Drew
Unisys

M3YA "M 13INVJ

SISATVNY
SINIWIYINOIY @3svd 1O3ra0
Ol HOVOYddV TVDIlLOVHd V

27 of 32

PAGE_J L INTENTIONAMLY BLANK

LW Filvico

Lt
suorjesad() uojsnoy .w ;
SASINA —

SISATYNY Q3Sva 103180

"SO3H

adao | 4-3
148
-

1300N
W31904dd

NIVINOQ IN31804d
1S31

W31SAS @3¥3IANaa

300D

aoo

NIVINOQ NOILN10S
HOVOYdddV 10 M3IAYINO

SASINA

D. Drew

Unisys
28 of 32

suorjelad() uojsnoy ﬁ

SISATVYNY Q3sve 103ra0 8861 ‘0€ 19QWIAON

D. Drew

Unisys
29 of 32

1SNIN V INTLSAS DNDIDVHL AILVINOLNV @

LNIW3ILVLS LNIWIHINOIY HOVI 40 NOILVNINVYXI S35HOJ @

g (| s d31S 1SYId TVILNISSINV @

ATIVHS X

A TIVHS X

dood

= || so34

NN

e -

20+uw

|]
NOILVINHO4NI SINIINIFHINOIY FZINVOHO

SASINA % —

|

‘

SISATYNY a3svd 103180 8861 '0€ JOQWOAON

1001 d3dIV-43LNdINOD Y04 3N e
14QON ¥-3T73A31 OL LdINILLV NI ALT1NDI441d J3Y3LNNODN3I e
dV31) SV LON NOILVDIHILNIAI ILNGIYLIV/dIHSNOILY1IY @

SAILILNT 40 NOILOVYHLXI QYVMYOILHDIVYLS @
713dOW H-3 THg

3LNAIYLLY A TIVHS X
?mzo:ﬁmm A TIVHS X

13AON DILVLS FHL I1VIYD

SASINA ﬁ

D. Drew

Unisys
30 of 32

8861 '0F JOQWSIAON

SISATYNVY 03Sva 10380

D. Drew

Unisys
31 of 32

NOILVINYOANI d311v.13d NIVLNIVIA LSNIN
S3INSSI NDISIA AIOAV Ol 11ND1ddIg e
TVIILIYD AHIA S1D3rd0 ONINVN @

S103rd0 OL NOILISNVYL HLOOAIS @

aao
9 1300W Y-3
9 JINQIYLLY

dIHSNOLLYI3Y

ALILN3

Q

TIAOIN DINVNAQ FHL 31VIHO

SASINQ ﬁ —

SISATVYNY g3Sve L03rgo 8861 '0F JOQWIAON

SNOILV.LN3S3dd OO ANVLISYIANN ATISVI SHINOLSND e
d35534AAvVv 39 LSNIAN SINSSI NOILVYDINNININDD e
SINOINHD3L ONITIAOW ISVavLiva Isn e

NOILVINHO4NI LNISIHdIY OL SINIT190Ud o

AdVINIANS

SASINA ﬁ

D. Drew

Unisys
32 of 32

N91-10616
A Modernized PDL Approach

for Ada Software 205
Development

Paul Usavage Jr. o

(215) 354-3165 S)

¥ % :\é;
AR

y §
L

M&DSO / Ada Core Team
Valley Forge, PA

ABSTRACT

The desire to integrate newly available, graphically—oriented CASE (Computer Aided
Software Engineering) tools with existing software design approaches is changing the
way PDL is used for large system development. In the approach documented here,
Software Engineers use graphics tools to mode! the problem and to describe high level
software design in diagrams. An Ada—based PDL is used to document low level design.
Some results are provided along with an analysis for each of three smaller GE Ada
development projects that utilized variations on this approach. Finally some
considerations are identified for larger scale implementation.

BACKGROUND

In 1987, the Ada Core Team was formed within GE's Military & Data Systems Operation to
apply advanced technologies including the Ada language to the development of large
satellite ground systems that form our business base. GE M&DSO has been producing
real timé satellite ground stations for 15 years with a strong, established methodology.
The addition of graphics workstations and graphics tools to this methodology is just a
natural evolution of these methods. The techniques proposed here have grown out of
GE’s methodology and been refined through use on various Ada projects and IR&D work.
The information in this paper is based primarily on the results of these efforts.

P. Usavage, Jr.
GE
1 of 23

INTRODUCTION

The availability of automated graphic tools sup-
porting structured analysis and structured design
techniques, and the need for major improvements
in productivity and quality are causing software or-
ganizations to rethink their software engineering
methodologies. PDL (Program Design Language
or Process Description Language) is the most
commonly used design tool in many organizations.
As a result there is a wide base of experience in
PDL as a descriptive medium.

Yet, when an organization wants to add CASE
(Computer Aided Software Engineering) tools to
their existing methodology, it often is unclear what
role PDL should play. Are PDL and graphic
CASE tools redundant, or can they both contrib-
ute to modern software design practices? And
what about the practice of coding some Ada con-
structs (notably package specifications) during
detailed an even preliminary design? Does this
narrow the scope of PDL's usefulness?

This paper is intended to document our analysis
of the most effective tools for each portion of the
software design cycle. Each tool, graphics, PDL,
and Ada source code, has characteristics that
make it useful to apply to part of the design prob-
lem. PDL has been used in the past for the
representation of many design aspects. Today
there are areas where PDL is best suited, and ar-
eas where other tools are better suited than PDL.

By way of further introduction, let us examine the
traditional design approach and use of PDL.

TRADITIONAL APPROACH TO
SOFTWARE DESIGN

Traditional documentation of a program with PDL
involves two parts. The primary part is the proc-
ess description, which is a description of the

implementation or algorithm used in a program,’

subprogram, process, function or procedure. The
second part is the prologue, which is usually pre-
sent to support the process description by
explaining input/output data items and local vari-
ables. The prologue often provides references to
the design or requirements documentation, and
usually includes information and format necessary
to an automated PDL processor. Sometimes the
term PDL is used to refer to just the process de-
scription, and others it is used to refer to the
prologue as well. In this paper PDL will be used
to refer either to the process description and to
the language used for process description.

P. Usavage, Jr.

GE

2 of 23

Software Design Phases

The evolution of a software design occurs in dis-
tinct steps over several project phases. During the
Software Requirements Analysis phase, a soft-
ware system is partitioned into Computer Software
Configuration Items (CSCIs), and all software sys-
tem requirements are allocated among these
CSCls.

During the Preliminary Design phase, a high
level design is conceived for each CSCI sufficient
to satisfy its allocated requirements. This design is
described in English in a continuous, flowing,
‘easy to read’ paragraph format. Software hierar-
chy charts are usually prepared next for the
design review. Database and file format designs
are initiated during this phase to reflect attributes
of the preliminary design.

The software design process continues during the
Detailed Design phase with the generation of pre-
liminary software source modules for each design
component. The method to be used in these
modules is described using a PDL process descrip-
tion. The first 'cut’ at this description would
likely be at a high level of abstraction (showing
fewer details). Iterative refinements are then
made of the PDL process description, assisted
somewhat by the use of structure charts. The de-
sign is refined by adding more detail on how the
module’s functionality is to be provided. This
lengthens the process description, and separate,
subordinate modules are then created to break
out cohesive elements of this process description.
A PDL processor is used during this activity to
check for syntax errors and to create calling trees
and object/variable cross-references for analysis
use.

The end of the PDL refinement process is
reached when two criteria are felt to be satisfied.
The first requires that the process descriptions
should be detailed enough that the module can be
coded by someone familiar with the technology
but unfamiliar with the design. The second crite-
ria requires that process descriptions must be of a
suitable length (between 1 and 2 printed pages) to
result in reasonably sized code modules. Consis-
tency and quality are encouraged by the
establishment of PDL standards, by the informal
sharing of sample PDL, and by peer review or
structured walk—through of the PDL processor
printed output.

The Coding phase implements the design. The
source code is written into the same modules al-
ready containing the prologues and PDL process
descriptions. In some cases the source code is

interspersed throughout the PDL in a style that
explains a step of conceptual processing with a
block of PDL, then implements it with a block of
source code. In other cases the entire process
description is kept intact at the beginning of the
module, followed by the entire source code. The
former makes it easier to match PDL to source
code, while the latter allows the PDL (and the
source code) to be better seen and understood in
whole.

Benefits Of Traditional Approach

Our Software Development section has enjoyed
steady productivity gains since this PDL methodol-
ogy was adopted. PDL usage has resulted in
higher quality and greater productivity than previ-
ous development methods (which made use of,
among other things, English prose descriptions
and flowcharts). Of course, many factors are at
work in increasing productivity including the avail-
ability of more and better hardware, but at least
some of this improvement can be attributed to the
use of a vigorous, robust, well-known and well-
followed methodology. The use of PDL
contributes to quality and productivity in the fol-
lowing ways:

1) Creation and maintenance of documen-

Disadvantages Of Traditional Approach

Usage of this approach has also shown some dis-

advantages. Some of these are:

1)

2)

3)

4)

The 'easy to read’ English prose used in
preliminary design documentation is
hard to write in a way that is free from
ambiguity.

The PDL documentation for a large sys-
tem is copious and very low—level in
detail; it can be very difficult to find the
PDL associated with a given aspect of
system behavior.

PDL does not support well the more
formalized structured approaches to par-
titioning (e.g., analyzing coupling and
cohesion) and automated checking, es-
pecially when experts try to review the
partitioning decisions of others or when
automated tools are used to verify the
design.

PDL approaches traditionally have ne-
glected the data part of a design

Advantages of Newer Graphic Tools

2)

3)

4)

5)

6)

7

tation is easier when employing the same
tools (e.g., computer terminals, editors)
used in writing the source code.

Design descriptions are more complete,
rigorous, detailed, and more standard-
ized.

Design walkthroughs may be used more
readily to reduce the number of design
errors.

Some aspects of the design (e.g., syn-
tax, keyword balancing, call trees,
indexing of references) may be checked
automatically.

Deliverable documentation may be pro-
duced automatically from source code
containing PDL.

Fewer errors are made when represent-
ing actual software implementation due
to the proximity of PDL and source
code.

Less effort must be spent on explanatory
comments when the PDL is located with
the source code.

CASE tools now available automate graphically—
oriented regimens in system analysis and software
design. These tools include support for such ap-
proaches as Data Flow and Control Flow
Diagrams, Structure Charts, Entity Relationship
Diagrams, Object Dependency Diagrams, Object
Interrelationship Diagrams, Data Dictionaries and
integrated tool databases. GE has used the
teamwork® tool from Cadre Technologies, Inc.
for the studies described in this paper.

The automated graphic tool approach to Struc-
tured Analysis and Structured Design has many
commonly recognized benefits:

1) Communication via graphics seems to
occur at a much higher information
bandwidth, using visible relationships
and psychological cues to more quickly
attain a high level of reader understand-
ing.

2) Graphics seem to provide better support
in decomposing or partitioning a soft-
ware problem or design, and in
examining alternatives and reviewing the
results.

3) Production of graphics for formal pres-
entations and reviews is automated.
P. Usavage, Jr.
GE
3 of 23

4) Tools can often assist in the storage,
control of and access to information by
design teams.

5) Tools can provide higher levels of auto-
mated balance and consistency checking
by including a data dictionary, and in
some cases can automate design verifica-
tion.

6) Graphic tools seem to better represent
system level behavior, interface design,
and data design.

Disadvantages of Graphical Tools

Graphics CASE tools also have their disadvan-
tages, including:

1) Graphics are generally less effective than
PDL when dealing with larger quantities
of low level details (for example, flow
charts become considerably less attrac-
tive when used to document low level
details of very large programs)

2) Newer, more complicated approaches
may require much more extensive tool
and methodology training to be success-
ful.

3) Graphics CASE tools can involve a sub-
stantial additional investment in both
hardware and software.

4) Development schedules must be adjusted
to reflect additional time spent on the
front—-end design.

5) It is very difficult to prove (e.g., to cus-
tomer or business management) that the
additional time and money spent up
front results in cost savings later.

6) Human nature sometimes leads people
to believe that the tool will do the work
for you; really it just helps to represent
work you do yourself.

PROPOSED METHODOLOGY

The following methodology, documented in our
Software Development Plan, has been synthesised
from our existing methodology and from proposals
by many authorities. It has been adapted to com-
plement our existing approach and is recommend
by our group for GE’s large development con-
tracts. The phases here are much the same as in
P. Usavage, Jr.

GE

4 of 23

other approaches, including the classical waterfall
approach and the default cycle documented in
DoD—STD—2167A. Familiar activities occur
during the phases but more effective tools, refine-
ment techniques and documentation media are
used.

The basic approach uses graphics at the higher
levels of abstraction and PDL at lower levels.
This documented approachsupports the use of the
Ada language well. A non-Ada version of the
Software Development Plan is planned to properly
exploit this same methodology on non-Ada pro-
jects. The current Plan version makes use of
object—oriented terms and methods. However, it
is intended to support either object—oriented or
functional decomposition of a system, or an ap-
proach that hybridizes the two.

Approach By Phase

The Software Requirements Analysis activity
uses a basic Structured Analysis approach (as de-
scribed by Yourdon & DeMarco, McMenamin &
Palmer, Ward & Meller, Hatley & Pirbhai, and
others) including the use of Data Flow and Con-
trol Flow Diagrams and a Data Dictionary for
Essential and Incarnation models (see the refer-
ences). The purpose of this is to model the
problem in more detail in order to understand it.
This is done first in a way that removes the con-
sideration of technology from the statement of the
problem solution, and then adds it back into con-
sideration. The results of this analysis, in the
form of Data Flow Diagrams, are input to the next
phase of software development.

Preliminary Design involves the identification of
Configuration Software Components (CSCs) from
the Data Flow Diagrams. These may be high—
level objects and operations identified in an
Object—Oriented approach. Object Dependency
Diagrams are produced for the identified objects.
Interfaces between CSCs (and CSCIs if not done
during Requirements Analysis) are defined, then
depicted using package specifications. The pack-
age specifications are coded in Ada, showing the
Ada declaration of each resource (mostly types
and subprograms) exported from the package
specification, along with Ada with clauses showing
necessary dependencies. Compiling these inter-
face specifications checks for consistency and
makes a firmer foundation for further breakdown
of development work. High—Level executive
CSCs are described with PDL at this stage to show
the major elements of control. The PDL for the
executives would include the creation of their dec-
larations in package specifications or as
stand-alone subprograms, along with Ada with

clauses for their dependencies. The PDL consists
of structured language process descriptions based
on the Ada executable statements for iteration,
loops, and conditionals. No attempt is made to
compile the executives at this point, the purpose is
to describe control dependencies inherent in the
design. This PDL may in fact be contained solely
within the CASE tool and not within a source
code member at all. This makes it instantly acces-
sible when documenting and refining later stages
of the design.

The design process continues during the Detailed
Design phase as structure charts are generated for
each CSC. These show the architectural details
involved in implementing the CSC. Computer
Software Units (CSUs) are identified. These may
be lower level objects in an object—oriented sys-
tem. The implementation of individual CSUs are
described in PDL process descriptions within the
CASE tool graphics environment. This gives the
programmer a better sense of partitioning and of
the overall system structure than does writing the
PDL into a disconnected source file. No compila-
tion is attempted of these process descriptions.
They are based on the Ada language syntax for
universality of understanding, not for compilability
at this stage. However, new interfaces derived at
this detailed level of design (i.e., more package
specifications) are coded in Ada and checked
with the compiler. These package specifications
declare all types and data structures necessary to
components external to the package specification.
Also, within the package bodies, internal types
and major internal data structures are coded in
Ada and compiled. This helps to firm the data
design and package dependencies. This is a ma-
jor design component that is best described and
checked with the Ada language and compiler it-
self.

The Coding phase that follows detailed design in-
volves transfering the PDL from the CASE tool
into existing and new Ada source modules, then
writing Ada code for the design represented in the
PDL process descriptions.

TRIAL PROJECTS

A number of GE Ada projects have been under-
taken using variations on the traditional and
proposed methodologies. The following projects
have been selected to present some variety in ap-
proaches to PDL. No hard metrics are available
for these projects to give insight into the contribu-
tion of methodology components, such as the
number of errors created and found during a

phase, or even created but not discovered. In-
stead, project team members were interviewed
about problems, rework and errors that occurred.
Their comments were then analyzed for apparent
relation to the choice of methodology.

The projects described here are IR&D projects
that have occurred over the last two years at GE.
They appear here in chronological order, and in
fact show an evolution in methodology over this
time period. Methodology refinement was not the
primary intention of these IR&Ds, each one was
instead performed with what seemed the best ap-
proach to those directing the efforts at the time.
Methodologies of later projects were of course
tuned to benefit from the lessons of the earlier
ones. Most participants were first time Ada pro-
grammers, although each project (after the first)
had at least one person assisting during coding
that had benefitted from some experience on a
previous phase. The experienced people were not
usually available during the design phase, how-
ever.

Project 1

One study in Ada software development involved
the redesign and re-implementation of a predic-
tive mathematical simulator. The project resulted
in approximately 8000 compiled Ada statements
(counted by semicolons, not including blank or
commented lines). Automated CASE tools were
not available during the study. Diagrams were
produced using a PC-based general-purpose
drawing tool. The Ada compiler itself was used to
check the PDL for syntax. PDL consisted of
coded and compiled Ada block constructs (e.g.
loops, conditionals), compiled type and variable
declarations, and Ada comments instead of pro-
cedural (sequential) statements.

During Preliminary Design, narrative English
specifications were produced according to more
traditional development methodology. Object/
Package Dependency Diagrams and Control Flow
Diagrams were drawn. These were presented dur-
ing the Preliminary Design Review (held at the
end of the Preliminary Design Phase), but effort
was not spent to maintain these diagrams for use
during Detailed Design. High-level objects and
procedures were identified and package specifica-
tions coded (but not compiled—the development
environment was not available at the time).

During Detailed Design, the Ada package specifi-
cations were entered and compiled. Any
interface errors detected then were corrected.
Package bodies, subprograms and most types and
P. Usavage, Jr.
GE
5 of 23

variables were declared in compiled Ada within
the code modules.

In the Coding phase, the unimplemented (com-
mented) portions of the compiled PDL bodies
were coded and the components integrated and
debugged.

The study was a quite a success as far as Ada soft-
ware development was concerned. However, an
analysis is possible of problems that arose during
the study for possible effects of the choice of
methodology. For instance, there was a wide vari-
ation among the six programmers participating in
the study in the style and composition of the com-
piled Ada PDL. Some felt very comfortable
during Detailed Design writing almost complete
Ada code and very few PDL comments. Some
felt very uncomfortable with the Ada syntax and
compiler and wrote mostly comments and few
compiled types/objects/block constructs. This
sometimes resulted in inconsistent levels of ab-
straction of the PDL design description.

In general, the project tended to achieve different
levels of abstraction and maturity at different
times. It took longer for a programmer to write
PDL that was mostly code. It took less time to
write PDL that was mostly comments, but more
time to write the source code in the next phase.
Management misunderstandings resulted from this
when attempting to assess the progress of the ef-
fort at a given point in time.

The problem with different styles of PDL and dif-
ferent PDL/code contents appears to be more
common with projects that use an Ada compiler
to check PDL. This also seems to occur more
frequently when there is less experience with Ada
and the PDL approach. One remedy for this is
more and better training. Another is no¢ to use
the Ada compiler to check PDL syntax—and the
problem goes away if a PDL processor is used
which has a more forgiving syntax, or if only a
visual check is performed on the PDL. The visual
check is appropriate only if module sizes are kept
small. After all, PDL syntax errors are only dam-
aging if they cause ambiguity or incorrect
interpretation in the design.

The problem with inconsistent levels of PDL ab-
straction that showed up on this project is
common to many different approaches and proc-
essors. This is bad because it is confusing, it
makes the design less understandable and less
easily checked by others. Abstraction is useful
because it hides those details unnecessary to this
portion of the problem solution. The more local-
ized the scope of detail, the less affected the
P. Usavage, Jr.

GE

6 of 23

system will be if it changes. Each person (or com-
ponent of software) has to be an expert in fewer
areas, and is free to concentrate and come up
with a better, more pure solution in his/her/its
own area. Removing unnecessary detail makes a
system design more understandable, modifiable
and robust.

The consistency problem decreases with program-
mer experience. Levels of abstraction can also be
checked for consistency during peer review or
structured walkthrough, giving feedback to the
programmer and allowing the descriptions to be
corrected. The best level of abstraction for a PDL
process description of a given module is some-
where above (less detailed than) the level at which
the source code for that module would need to be
written.

Despite the apparent problems the team was able,
however, to bring all portions of the system to
completion by the end of the test phase. The pro-
ductivity of the total effort was only very slightly
lower (a few percent) than that of the more tradi-
tional projects. This was probably affected by a
variety of factors including less effective training,
lack of tools and technical difficulties with the
platforms used, but also that slightly less docu-
mentation was produced than is normal.

Project 2

The second project for analysis was a 1988 IR&D
effort to design and implement a platform-inde-
pendent Ada binding for a Man-Machine
Interface. Portions of the project made use of the
graphic CASE tool when it was available. It used
an Ada based, uncompiled PDL but no PDL
processor. This project resulted in a larger design
than was implemented, with about 2000 lines of
compiled Ada code (again by semicolons, not in-
cluding blank or commented lines) being
produced.

During Requirements Analysis, Data Flow Dia-
grams were constructed to describe physical,
logical, and incarnation models. The resultant
diagrams were used during Preliminary Design to
help identify high-level objects and to partition
the system. Ada package specifications and their
bodies were written (with subprograms deferred)
and compiled to document the interfaces. Object
Dependency Diagrams were drawn to show the
object relationships.

During Detailed Design, extensive use was made
of the Ada compiler. Drivers were identified and
coded in Ada. Important type and object decla-
rations were coded within the package bodies. A

key routine in each of the major objects/packages
was coded and tested to ensure the feasibility of
the design. A key routine was some subprogram
that, when demonstrated, would validate most of
the design decisions for the rest of the subpro-
grams in an Ada package. Other, non-Key
subprogram bodies were designed and docu-
mented only in PDL within the source modules.
This PDL used Ada syntax but was commented
and not compiled. Some type and data declara-
tions were coded compiled. Some structured
design diagrams were constructed but not many.
The burden of design documentation and analysis
and refinement was performed using compiled
package specifications, compiled key routines, and
PDLed subprograms. The CASE tool was not
continually available during this phase due activi-
ties involving the tool evaluation and purchasing
mechanism.

During the Coding phase the subprograms already
expressed in PDL were expanded to code. The
coded portion of the system was integrated, tested
and demonstrated.

Again, the overall project was successful but some
useful methodological refinements may be sug-
gested from observation. One such observation is
that because the graphic CASE tool was not al-
ways available during the project, a graphics
approach was not taken during much of the pre-
liminary and detailed design stages. Instead,
emphasis was placed very early on representing
the design with coding package specifications and
bodies. Much rework was involved as new alter-
native designs were identified, coded in Ada
package specifications and bodies, reviewed, then
modified. The normally constructive and neces-
sarily iterative process of conceiving a solution,
expressing it, evaluating it, and suggesting other
alternatives suddenly seemed to involve too much
effort and be too destructive to the participants.

One possible approach to this difficulty of rework
involves exploring the design in more detail, using
graphics and PDL within the CASE tool, before
package specifications are coded. The tool has
fairly good support for this. Balancing is checked,
and creation and modification of graphics is made
easy within a window—and—mouse oriented envi-
ronment. The tool checks balancing and graphic
relationship rules for the resulting diagrams.
Then, when the Ada package specifications are
coded and compiled, they are built on a founda-
tion of previous work which has already involved
consideration of many of the possible alternatives.
There should be less need for generatirg alterna-
tives.

Overall, the productivity of this project met that of
other projects in our organization’s past.

Project 3

The third project was the most recent and the
most closely matched to the proposed methodol-
ogy. The late—1988 project completed the coding
and testing phase during the writing of this paper.
It redesigned and coded two CSCs (functions) of
a prototype real-time distributed ground system in
Ada. Over 7000 lines of Ada code (measured by
the same criteria as in the other projects) were
written. Extensive use of the graphic CASE tool
was made throughout the entire design effort.
Again, an automated PDL processor was not
used.

During the Software Requirements Analysis
phase, the system was modeled in Data Flow Dia-
grams. During Preliminary Design, these DFDs
were used to generate Objects and Operations,
and Object Interrelationship Diagrams were drawn
using the CASE tool. Major objects were coded
as Ada package specifications, with their opera-
tions being the subprograms exported from the
package specification.

During Detailed Design, Structure Charts were
drawn showing the interrelationships of each ob-
jects operations in performing some component of
the system's purpose. Each operation was de-
scribed with Ada—based PDL within the confines
of the CASE tool. Refinement was performed by
editing the PDL to increase the detail, then break-
ing out pieces of this new detail into new software
components and creating new modules for them
in the structure chart. When analysis and review
of the structure charts and PDL met with satisfac-
tory results, matching Ada package specs were
created. Each specification was coded to show
the exported resource (mostly types and subpro-
grams) and the procedures stubbed out. PDL
prologues were placed in the Ada modules, but no
PDL. The PDL remained within the CASE tool
database retrievable through the structure charts.

During the Coding phase, the subprograms were
written in Ada either from the PDL printed from
the CASE tool, or from the same PDL cut and
pasted into the modules through the window and
mouse—oriented workstation environment. The
design information remained available within the
CASE too! database {(and would be delivered that
way, in a soft copy documentation scheme for de-
liverable software).

This approach seems to have paid off in a number
of ways. Partitioning seems to have been so fully
explored using the CASE tool that little rework of
P. Usavage, Jr.
GE
7 of 23

compiled Ada package specifications was neces-
sary. Design alternatives were efficiently analyzed
within the CASE tool, where graphic and PDL in-
formation combined to give a good view of the
system at several different levels of abstraction.

Module sizes were judged to be excellent: a half
page maximum of PDL. Quite a few modules
tested correctly when first compiled, even when
coded from PDL by a first—time Ada program-
mer. This was attributed to the simplicity of the
modules and the clarity of the PDL, which in itself
might be attributed to the quality of partitioning,

Com- Com-

piled piled

Ada |-f—X3»| ppL
Source

- ___ | PDL

Project
1 Project

The quality of the PDL seemed to be enhanced by
its proximity to the graphic representation of the
overall hierarchy, and the relative ease of tra-
versal from PDL description to PDL description
throughout the hierarchy. This ease of use con-
tributed to good partitioning showing good
coupling and cohesion characteristics.

The productivity on this project seems to be well
ahead of that established for traditional projects
(in the ball park of a 10-20% improvement for a
first Ada project).

Un-
checked

3

A view of PDL alternatives and our target approach
Figure 1

CONCLUSIONS AND SUGGESTIONS

Choice of Representation

One general theme in the methodology is to ex-
plore a design fully given the tool appropriate (o
the level of abstraction. The choice of tool should
efficiently allow representation of that level of ab-
straction, and allow review, generation of
alternatives, and easy representation of the final
choice. Alternatives should be explored fully and
adequately at the design stage under considera-
tion, with the tool that does so in a most efficient
(and reliable) manner.

Graphics seem to be a useful, powerful, and effi-
cient tool for upper to middle level design. They
P. Usavage, Ir.

GE

8 of 23

also, with the proper tool, serve as an outstanding
mechanism for indexing or gaining access to the
low level of design. A graphical tree structure
with a system breakdown is more easily understan-
dible and more efficient a representation when
searching for a given piece of a system than any-
thing that we’ve seen before.

Quality and Testing

The alternatives and final choice of design from a
phase should be subjected to some Sform of testing,
that is, analysis, review, compilation, balance
checking, or whatever else can be done (o find as
many errors as possible and to demonstrate as
much quality as can be demonstrated. This pro-
vides a firmer foundation for the work that follows
in development. Asg everyone knows, latent (un-

discovered) errors output from a phase are much
more expensive to fix in later stages.

Scaling Up to Large Systems

The methodology was designed from experience
in large systems—for application on large systems.
The one place where scaling will change emphasis
is on the choice of and number of tools. No PDL
processor was used at all for any of the examined
projects. This was due to the size of the projects
versus the cost of procuring a tool. This approach
should be re—examined for a larger projects.

On larger projects with more people it is more dif-
ficult and more important to have consistent,
quality PDL. A-PDL processor can contribute to-
ward this goal. It certainly doesn’t hurt to
automatically check PDL for syntax and balancing
errors, as long as the correction of errors does not
detract from the creativity of design as sometimes
happens with a strict Ada compiled PDL. No
PDL processor is currently available that is inte-
grated with the chosen CASE tool, but alternatives
are being evaluated.

P. Usavage, Jr.
GE
9 of 23

THE VIEWGRAPH MATERIALS
FOR THE

P. USAVAGE, JR PRESENTATION FOLLOW

N RAAE_ /(O INTENTIONAMY BLANK
e FILMED

suonjerad() swdIsAS vle(2 ATENIA/AD
juauneda(SWAISAS puno.In)

wed], 910) epy
If ‘adeaes)) [ned

juawdojaAa(g a1emyjos epy 10}
yoeouaddy 1ad poziuispoN Vv

P. Usavage, Jr.
13 of 23

eaGE /L. INTENTIONABLY BLANK

SuUONSa33INg pue SUOISN[OUO))
SISA[eUy @

ASo[opoyly e

:s109l01g ApmiS 921y T
yoeoiddy posodoig
yoroiddy [euonipeiy
uondNpoNUY

DPUISY
INFINdOTHAHA TIVM.LAOS &PV OL
HOVOUddV T1dd AAZINSAAOIN V

ININD DT 3A30 3YYMLA0S

P. Usavage, Jr.

GE

14 of 23

;ss9001d uSisap oy Jo 1ed yorym s11f 1529 1001 YOTYA
TWS[qOIJ MIN UL

suorjeoioads afesoed epy pofiduiod

o8en3ue] T(d paseq-epv

SUOTIBISIOM DoUBULIOJISd—y3IY

uononpoid JUdWNOOP pIrewoIne

USIso(] PAINIONIIS/SISA[EUY PaINIoNIg 10 spoylow reorydeis
$s[001 SV drydeis

'UONB3NSIAU] 9 T

aFengue[epY SU1 JO SIJOUL] 9Y) dterodioour)
UOTRIUSWNOOP USISSP V,L9T1Z—ALS—Aod 2onpoid)

Spoy1oW pue {00} uSIsop paseq—soryders mau Jo SIJaUdq) ppe o

:01 £Sojopoyiow wasks—agrel ‘Guons unsixs apeiddn)

wo[qo1d QYL

P. Usavage, Jr.

GE

15 of 23

INIWNA0T13A30 3UYMLIDS

uononpoLjuj

INAINJOTIATA TIVMALAOS BPV OL
HOVOUddV T1dd AAZINYHAON V

SUWIDISAS 93IE[I0J AN[IEIS ATESSI09U UM (OBOIAAE SANIBAOUU]

oSN paieys 10J aseqelep usIsop surejurew [0o [

o4m1d usisap 81q oy suondLosep (I [[ews 19419307 san £]
TAd O3 XSpUl se $oAIos weIdeIp usIsap [9a9] YSiy soydein
paonpoid Ajesnewone sjuawnoop ugisop g-sy 29 Areurwnpoid
1941980} Td pue soydeis jsurede pawriojrod TUSWIDUIJI SANRIN
9p0d ePpY paidwods ur pajuasaidar saoeyouy

Heyd aInonns oryders umgiim smopuim 001 gV Wolj g P

Tdd pue soryderd parerdorur yum pojussardal uSisoc]

:$9SBJ USISI(] Pa[IeId(pue AIeurioig

woIsAs Fursodwoosp usym werqold oy pueisiopun 03 sdjoy £1
suonejuasaidar jeorydeid

oy10 pue sweIselq mo[J eleq Suisn pajordop sjuowdImbayy)

SISA[BUY PaINIonIS JO SNSI POIB[NUWINOOL UO PIseq USISOp 91BM1JOS)

:9SBYJ SISA[RUY SjuaWoInbay

SiuaanoLdu] pasodo.g

INHINdOTIAHA HIVM.LAOS ePV OL
HOVOUddV Tdd AAZINJAAON V

ININJO0T3A30 3¥VYM1406S

P. Usavage. Jr.

GE

16 of 23

STUSWRTR]S [eNUaNbas 10 STUSWWOD EPY

S[euonIpuod ‘sdo0[—Ss1oNIISU0d }001q poniduwo))

1dd ePV pa[idwod pasn)

suonearjoads ofeyoed epy se s90eJIIUL [PA9]-U3IY PapoD
yoeoxdde pojusn10-199[qO

uoneiuasald 10J Pasn s}eyd 2INIONNS

asoxd ysiSug ur sjuowalmbal pue usIsop [A9[-USIH
SPOYIRIN
101R[NWIS [EONBWAYIEIA — SJUSWIELIS BPY 0008)

09lo1g

P. Usavage. Jr.
17 of 23

IN3INJ0T3A30 3¥VYMLI0S

punotdyong — 12loiq Kpnis 1841,
INAINdOTIATA TIVAMILAOS ¥PV OL
HOVOUddV 1dd AAZINJAdON V

S[qe[reAe d1om uonejuasarder roxomnb
J1 OB} INO YIOM 0] SWN) 210U YOOI SOANBUIdE USISa(T

sJjoopen

[9A9] I9USIY 2Indsqo pnod uonejussaidar USISOD [9A9] IOMOT)
WY UdoMIq

9PIOAp pue SUFISOpP 2ANEUIS)R Juasaidol 0] INOIJIP SI0W J1 OpBRN)
epy poiduwios

ur usisop jussarder 01 ordood owos I0] POAJOAUI 1I0JJ0 BIXF])
uoneyuasardar udissp uo juads

}10]J9 WO 1BYMIUIOS PIJORISP SIOLIS XBIUAS JO uo110919p Iofidwon))

TAd paridwos yim pourroyiad sisA[eue Suruonnieg
[001 sisATeue Suruonnied sano9jye j0u £

*3[qI$sa20® JoU 1M sotydern)

Podo[oAdp sem 9pod SIoyMm WSISAS
woiy Aereredss 001 Suimerp 2dA1-Dd Yum pojonnsuoo soydeln) ()

sosodind uonejussaid 10y Apysowr ‘soryderd Jo osn pojwry

SISKppuy — [109l044
INHNJOTIAHA AAVM.LAOS &PV OL
HOVOUddV Tdd TAZINSAAOIN V

IN3INd0T3A30 IYYML140S

P. Usavage, Ir.
18 of 23

posn j0U 10ss9001d T(d

9p02 32INOS BPY YIm pa1031s "Tdd

suotsoop Suruonnied I10J
Jou 1nq suoneiussaid 103 pasn sureldel(Jyng pue SHEYD 2IN1ONIIS

o
P. Usavage, Jr.

SooEo azAreue 01 pasn [yoood] swreigelq Aouspuada(109[Q0
so0BJISIUT 199({q0 MOUS 01 Pasn suorjeoijoads ofeyoed epy
Furuonnred wa1sAs 10] pasn usisop paIueLI0-199[q0

sjuouodwos ojur waisks uonnied 01 pasn sAAd

(s(T () sweidei mo[] ered Po1eIoUdS SISATRUY PaInidnIg
:SPOYIIN

ooeIU]
SUTYORJN-UB]N 10} 3urpulg epv pojuswa[dwl pue paudIse()

suaWAILIS BPY 0007 °®

1109l01d

punoSyong — g 10aloid
INTINdOTAATA TAVALAOS BPV OL
HOVOUddV 1dd AIZINJIAON V

IN3INd0T3A30 33 305

19 of 23

uononpoid xapul pajewone ou — pasn jou 10ssa001d (g)
UBISOP 9Y1 Yim Jel[Iwe] A@1eUUMUI JOU
9IaM NOA J1 T Jo 2Fessed uoars e PUl} 01 SNOIP3] 1BYMIWIOS SBMm 1])
uoneiou orydels ulyiim g 2I01s 01 SqQE[IBAR 10U Sem [00] gSV)))
9P0J 30INOS BPY YNM PaIols (I)
sogueyd aerodioour 01 y1om s1ow pue ‘soAaneuroe
SlEn[eAs 01 I95UO[Y001 (I pue 9p0od Yim Furtuoneg)
sisATeue Sutuonnied 10y jou ‘suonejuasaid 10§ pasn sireyn) 2IN0NIIg o
suonesjoads a8exoed epy poqrdwos
pue TQd Suisn pouwuoped uruonnied [9A9[-uonejuawaduuy)
SWRISeI(] MO[] BIB(] UO poseq powtograd Zuruonmred [oas[-ySipy o
SISATeUy

IN3INd0T3A30 34vym1406S

SISKipuy — 7 100l044
INHINdOTIAAA AIVMIAOS BPV OL
HOVOUddV Tdd AAZINYAAOIN V

P. Usavage, Jr.

GE

20 of 23

pasn jou 10ss3001d Tdd ()

guruonnied a1emijos
ourjol pue ozAJeue A[pajeadal 01 pasn TAd PUB SHEUD aInonINg

1Iey) 2INIoNIIG Ul X0q $s3001d 1oes ulyim pal1ols "1dd
guruonnied
1olqo ozAreue 01 pasn [yoood] sweiderq Kouspuado@ 109[q0O

SooRJIDIUI 109(qO MOYSs 01 pasn suoneosijioads ofeyoed epy
Suruonnued wolsAs 10] PIsN USISIP pPa1UAII0-193(q0
sjuouodwod ojur wasAs uonnted o1 pasn sAAd

sureiSel(] Mol ele(] PIIRISUSE SISA[EUY PIINIONNS

:SPOIOIN

aod£10101d vonIRlS PUNOID) PIAMQLISI(T
oW ~[eoy JO suomnounj ¢ epy Ul pouswe(dwl pue Pau3IsoPIY)

sjuowWaleIs BpV 000L o

99loag

P. Usavage, Jr.

GE

21 of 23

INING0T3A30

PUNOIENIDG — £ 192l04]
INAINJOTIAHA AAVAMIAOS BPV OL
HOVOUddV 1dd FAZINIAdON V

2INIONIIS WISISAS JO SIsA[RUE 10J 9ATI09IJD KIoA 9q 01 woss sorydein)
guruonmnred aremijos jo JuSwIUIJaI
pue sisA[eue y3noIOy) 2IOW PIMO[[E [00] SWILs) UIyIm
Idd pUe SuEUd 21monns ynm sisAjeue pue Juruonnreg £1
Zuruonnred sremijos
Suljal pue szATeue A|pateader o1 pasn Qg pue s1Iey) 2In1onng)
uSIsa(] paustI0)—103[qQ ue
01 sweIserJ MO ele(woij o3 01 pasn yoeoudde pajusri-109[qO ®
swieIgerq molq eie Suisn undoq gutuonnred [oAs] ySiyg ®
SISATeUy/

ININDOT3A30 IYYML40S

SISKppuy — ¢ 100[044
INHINdOTIATA TIVM.LIOS &PV OL
HOVOUddV 1dd AAZINJAAON V

P. Usavage, Jr.

22 of 23

£1

TUSWUOIIAUS (00} SV sorydeis yim 91eIga1ul P[noys
$10119 UJISap

onx) puij o1 Mydpay st (xejuks jo SuIAIZIo] yeymowos) 10ss9001d TAd)

:dn 3ur[eos

ugisop Jo I0Ae] 1XaU JUIp[ing 210J3q SIOLS 10]

DO3OIYD/PIMIIARI/PIZABUE/PIISI) ©Q P[NOYS SIIIOYD PUEB SHNSSI [V

:Sunso I, pue AenQ

uoneiussaxdaijuonoensqe/sseyd 1xou 01 UO 3uro8 a10joq yoroidde
159q 9Ul UO OpISp ‘MIIAdI ‘SIANBUIRIE wSﬁoEtmm surwexyq ()

2A1109]]9 1sowr st (Jgd 01 do3)

Wo1sAs 91U 10] UmMOpealq waisks padeys—asan reorydein
ugisop [9A9] S[pprw pue 1oddn 10J 1s9q SIe sorydein)
UOTORIISqE JO [9A3] 18y} 10 001 1599 Y1 Yim AJ[n] udisop a1o01dxyg
:uoneuasardoy

£
£1
o

P. Usavage, Jr.

GE

23 of 23

SUO1IS288NG PUD SUOISN]OUO))

INANJOTIATA TIVMALAOS BPV OL
HOVOUddV T1dd AIZINJIAON V

INIWNd0T3A30 3¥¥YMLI0S

Representing Object Oriented Specifications and Designs

N91-10617

~ ./';
705

with Extended Data Flow Notations

Jon Franklin Buser = > "¢}
Paul T Ward |

Abstract

This paper addresses the issue of using extended data
flow notations to document object oriented designs
and specifications. Extended data flow notations, for
the purposes of this paper, refer to notations that are
based on the rules of Yourdon / DeMarco data flow
analysis. The extensions include additional notation
for representing real-time systems as well as some
proposed extensions specific to object oriented
development. The paper will state some advantages
of data flow notations, investigate how data flow
diagrams are used to represent software objects,
point out some problem areas with regard to using
data flow notations for object oriented development,
and propose some initial solutions to these problems.

Introduction

Data flow diagramming is a general graphic-based
modeling notation that has gained wide industry ac-
ceptance as a software specification and design tool.
The proponents of object oriented techniques claim
that systems built using these techniques have a
natural system architecture that allows easier system
modification and software component reuse. The
authors support a method of system building that
follows an object oriented development strategy and
uses extended data flow notations to document the
specification and design. There are many reasons for
using data flow notation as the documentation
medium:

° The notation is supported by a large number
of Computer Aided Software Engineering
(CASE) tools.

Data flow models are not specific to any par-
ticular computer language, operating system,
or hardware configuration making the neces-
sary investment in training and tools useful
over a wide spectrum of projects.

° Data flow modeling has a relatively long
and successful record within the computer
industry; many software engineers already
have a working understanding of the nota-
tion.

Data flow diagrams use circles to represent
processes, or units of work within a system, and
arrows to represent data that is supplied to and
produced by the processes 1 Data Flow diagrams
can be used for modeling general problem
domains. These domain models are then evolved
into software system specifications and designs.
Figure 1is a data flow diagram describing a Data
Storage and Reporting System. The system
produces reports on stored data and has a menu
driven user interface for adding and updating
records. A complete specification for the system
would also include a detailed description of each
process explaining how it will produce its output
given the input data supplied. The Ward/Mellor?
and Boeing / Hatley 3 real-time extensions intro-
duce additional graphic symbols that are used to
integrate finite state machine logic into the model.
These state machine models strictly define the
relationship of operations within a model and can
potentially be executed to demonstrate the cor-
rectness of the model.

Object Oriented Partitioning

One of the key features of a data flow model is that
it may be partitioned and leveled. This means that
a number of processes can be grouped together
into a single higher level process that represents
the combined operations of the lower level
processes. The highest level diagram in the model
(the context diagram) represents the system as a
single process and uses rectangular boxes to rep-
resent entities that are external to, but interact
with, the system being modeled. Figure 2 is a

J.F. Buser
Software Development Concepts
1 of 22

MeTu .
Selection

Ke{ Field +
Data Record

Add
New
Record

Menus Report

Print
Report

Data
Record

Updat

Recor

K414
v

Read
Record

Stored Data

Figure 1

context diagram for the Data Storage and Reporting
System.

Traditionally, data flow models have been parti-
tioned by using a strategy called functional decom-
position. This is a top down method that identifies
high level system functions and then details, at the
next level of the model, what processes will be re-
quired to perform each function. This process is
repeated until all of the system’s primitive com-
ponents have been identified. Figure 3 shows a pos-
sible functional partitioning of the Data Storage and

User Inpug////
System "/ Data
U)s,ere Menus ﬁtora%e
epor
Reports Sygtem
Figure 2
J.F. Buser

Software Development Concepts
2 of 22

Reporting System. The system is partitioned into
two sub-systems: one for managing data input and
the other for data reporting. Both sub-systems
have direct access to the data store.

There are other partitioning methods. One alter-
nate strategy groups together processes that are
parts of the response to a given external event.
Another organizes the model so that the number
of data flows between the higher level processes
are minimized. The choice of system partitioning
is important because it will define the major sub-
system interfaces and, in the case of large software
projects, it will probably define the management
structure of the organization that builds the sys-
tem.

Object oriented specifications are produced by
changing the criteria used when partitioning the
model. With the help of information modeling
techniques, classes of real world objects are iden-
tified in the problem domain #. Then the data flow
model is partitioned by grouping together the
processes associated with each object or class. In
the case of the Data Storage and Reporting Sys-
tem we will identify a user interface object, a
report object, and a data store object. These
specification objects may be useable directly as

User
Input

Manage
Data
Storage

Data
Records

Data
Records

Produce
Reports

Stored Data

Figure 3

design objects, or they may have to be modified to
transform them into design objects (e.g., to meet
system performance constraints). These design ob-
jects can then be implemented as information hiding
modules or Ada packages.

Data Flow Problems

We have found the object oriented partitioning
strategy useful, however some of the rules governing
traditional data flow diagrams and the CASE tool
implementations of these rules conflict with object
oriented goals.

One goal of object oriented design methods is to
identify reusable objects. These objects may be
reused within the same model or in different but
related problem domains. Many of the CASE tools
have a problem with regard to reusing these objects
in the same model because the CASE tools typically
enforce that all processes have unique names. If we
want a process to be reused within a single model,
naming conventions have to be devised to specify that
different instances of the process are really the same.
Of course, without additional tool support it is im-
possible to prevent different instances of each object
from being modified so that they are no longer the
same.

Another problem is that objects designed with reuse
in mind will often be built in a more general manner

than ones that have been engineered for a specific
use. The result of this is that all of the object’s
access functions or methods may not used in a
specific instance of the object. One of the primary
model validation criteria applied to data flow
diagrams is that all of the input and output flows
entering a process must exist in the lower level
description of the process. The existing CASE
tools will report errors when general reusable
objects are used in a model that does not make use
of all the object’s capabilities. For example, a

Data Key
Record Field

pData
Record

Figure 4

J.F. Buser
Software Development Concepts
3 of 22

Add

Update
New Record
Record

Figure 5

more general data store object for the Data Storage
and Reporting System might have a process for delet-
ing records from the store. If this object is instan-
tiated in an application that does not require a delete
capability the analysis routines in the current CASE
tools will report an error. To successfully level-
balance the model, the delete process and its as-
sociated flows will have to be removed. A CASE tool
designed to support importation of reusable objects
must have a facility for deactivating specific access
routines.

Add New Record =

Input Key + Input Data Record
Update Record =

Input Key + Input Data Record
Read Record =

L

Input Key + Output Data Record

Figure 6

Representing Access Functions

Data flow models can be partitioned so that
processes are grouped together in an object
oriented fashion. The rules of data flow notation
also allow data flows to be grouped together. This
is commonly done to reduce the clutter of data
flows entering and leaving higher level processes.
We propose that the data flows should be grouped
together so that all of the input and output
parameters of each access routine are combined,

UIo.
Teimlgal
Interface
¢ RO.
o Produce
e Report
User = >
Interface
Object e
DSO.
Read
DSO. Record
Update
Record
DSO. DSO.
Add Read
New , Record
Record \ >
Data
Store
N o o Object
J.F. Buser

Software Development Concepts
4 of 22

Figure 7

and that the combined flow is named for the access
routine that it represents. If this approach is not
followed it is impossible to determine which data
flows operate together. Figure 4 shows the data store
object from the Data Storage and Reporting System.
Notice that all information that correlates input and
output data with specific object capabilities has been
lost. Compare this to figure 5 which groups the
object’sinput and output flows together according to
which access routinc they are associated with. Infor-
mation about the object’s access routines is now
retained. Figure 6 shows the composition of the each
of the flows from figure 5.

Some CASE tools allow a data flow to have arrows
on both ends indicating a two way flow of informa-
tion. We suggest that this is a useful convention for
representing flows that have both an input and output
component. This notation is not completely adequate
though, because it will not be clear from this diagram
which object is using the other. This problem could
be alleviated by introducing a new graphic symbol to
indicate the direction of these combined flows or by
applying naming conventions. One naming conven-
tion could name the flow by concatenating the objects
name with the access function name, another conven-
tion could specify whether a particular flow com-
ponent was an input or output (e.g., "input data
record" as opposed to just "data record"). Figure 7
shows how the data store object integrates with the
rest of the Data Storage and Reporting System using
the double arrow head convention.

Future Work

Data flow diagrams can be used to model object
oriented specifications and designs, however addi-
tional conventions may be needed for this to work
well. Further work is needed to identify all of these
conventions and to integrate them into CASE tools.
Two areas of particular need are tools that will sup-
port the concept of inheritance, and browsers that
can scan reusable software object libraries docu-
mented with data flow diagrams.

[1]

(2]

(31

[4]

References

T. DeMarco, Structured Analysis and
System Specification, New Jersy.:
Prentice-Hall, 1978

P.Ward and S. Mellor, Stnuctured Analysis
for Real-Time Systems, New Jersy:
Prentice-Hall, 1985.

D. Hatley and E. Pirbhai, Strategies for
Real-Time System Specifications, New
York: Dorset House, 1987.

S. Mellor and S. Shlaer, Object Oriented
System Analysis, New Jersy:
Prentice-Hall, 1988.

J.F. Buser
Software Development Concepts
5 of 22

THE VIEWGRAPH MATERIALS
FOR THE

J. F. BUSER PRESENTATION FOLLOW

R T W

PAGE é INTENTIONALLY BLANK

Representing Object Oriented
Specifications and Designs
with

Extended Data Flow Notations

by
Jon Franklin Buser

Paul T Ward

J.F. Buser
oy Software Development Concepts
9 of 22

L_ﬁ_____mrfunomm BLANK

Wi
PR T

Software Development Concepts Background
Information

e Real-Time Data Flow Diagram Extensions

e Develop Courses and Teach Real-Time
Specification and Design Methods

e Work with CASE vendors

e Continued Research into Real-Time Development
and Object-Oriented Methods

J.F. Buser
Software Development Concepts
10 of 22

Goal

Develop ways to represent object oriented designs
and specifications with Data Flow Diagram based

notations.

J.F. Buser
Software Development Concepts
11 of 22

Advantages of Data Flow Diagrams

e Supported by many CASE tools

e NOT specific to any computer language or
operating system

e Many Software Engineers already have a working
understanding

J.F. Buser

Software Development Concepts
12 of 22

Data Flow Problems

o CASE tool enforced unique names conflict with
component reuse

¢ Level-Balancing conflicts with building general
reusable components that have unused access

functions

e Commonly used partitioning strategies do NOT
reinforce the concept of Software Objects

J.F. Buser
Software Development Concepts
13 of 22

The Data Storage and Reporting System

Data

Storage

Report

User Input
B
System Menus
User
Reports
J.F. Buser

Software Development Concepts
14 of 22

Systenm

Data Storage and Reporting System

Detailed View

Input

Key
Field

Display

Menus

Menu
Selection
Record
-~
Key Field +
Data Record
. Key
Field
aAdd Read
New Record
Record
- Stored Data
J.F. Buser

Software Development Concepts
15 of 22

Data Storage and Reporting System

Functional Partitioning

A A
User Menus Reports
Input
Data

Manage Records Produce

Data —ﬁ\Yf Reports

Storage

Stored Data
J.F. Buser

Software Development Concepts
16 of 22

Obijects in the Data Storage and Reporting System

e Data Store Object
e Report Object

¢ User Interface Object

J.F. Buser
Software Development Concepts
17 of 22

The Data Store Objects grouped together

Data Key Data

Record Field Record

J.F. Buser

Software Development Concepts
18 of 22

New Partitioning Conventions

for Representing Objects

e Group together processes that operate on the same
real-world objects

¢ Group together Data Flows that are associated with
the same process or access routine

o Name the combined flow for the access routine that
it is attached to

e Use double arrow head if the flow is composed of
both input and output flows

J.F. Buser
Software Development Concepts
19 of 22

The Data Store Object

Update
New ~j$ Record
Record
Read
d Record
—

Add New Record =

Input Key + Input Data Record
Update Record =

Input Key + Input Data Record
Read Record =

Input Key + Output Data Record

J.F. Buser
Software Development Concepts
20 of 22

Obiject Oriented View of the

Data Storage and Reporting System

UIo.
Terminal
Interface
RO.
Produce
Report
User
Interface
Object .
DSO.
Read
DSO. Record
Update
Record
DSO. DSO.
add Read
New Record
Record

J.F. Buser
Software Development Concepts
21 of 22

Future Work

e Work further with these conventions
e CASE tools to support reuse and inheritance

e Browsers to scan libraries of reusable components
documented with Data Flow Diagrams

J.F. Buser

Software Development Concepts
22 of 22

APPENDIX A

ATTENDEES OF THE 1988 SOFTWARE ENGINEEING WORKSHOP

ATTENDEES OF THE 1988 SOFTWARE ENGINEERING WORKSHOP

ADLER, DAVID
ADLER, JONATHAN
AGRESTI, BILL
AMMANN, PAUL
AMSLER, JOHN
ANDERSON, MARSHALL
ANGIER, BRUCE
ANTONOPULOS, BETH
ASTILL, PATRICIA
AUSTIN, GIL
AZZOLINI, JOHN
BARBER, GARY
BARKSDALE, JOSEPH
BASILI, VIC

BAYNES, PERCY
BEALL, DANIEL
BEARD, R
BEARDSLEY, KARLA
BECK, HANK

BEIERSCHMITT, MICHAEL

BENNETT, TOBY
BIGWOOD, DOUGLAS
BISIGNANI, MARGARET
BLAGMON, LOWELL
BLAND, SKIP

BLUM, BRUCE
BODIN, JOSEPH
BOND, JACK

BOOTH, ERIC

BOYCE, MARY-ANN
BRANCH, EDWARD
BREDESON, MIMI
BREDESON, RICHARD
BRILLIANT, SUSAN
BRINKER, ELISABETH
BROPHY, CAROLYN
BROWN, DAVID
BROWN, JAMES
BUCHANAN, GEORGE
BUELL, JOHN
BURCAK, THOMAS
BURLEY, RICK
BUSER, JON
BUTSCHKY, MICHAEL
CALDIERA, GIANLUIGI
CARMODY, CORA
CASHOUR, JOHN
CAUGHEL, BRIAN
CERNOSEK, GARY
CHANG, JOAN
CHASSON, MARGARET
CHEADLE, BILL
CHEN, JENNIFER

THE MITRE CORP.
UNIVERSITY OF MARYLAND
MITRE CORP.

THE SOFTWARE PRODUCTIVITY CONSORTIUM

OAO CORP.

DEPT. OF DEFENSE
INSTITUTE FOR DEFENSE ANALYSIS
NASA/GSFC

SIGMA DATA SERVICES

IIT RESEARCH INSTITUTE
NASA/GSFC

INTERMETRICS, INC.
NASA/GSFC

UNIVERSITY OF MARYLAND
VITRO CORP.

FORD AEROSPACE CO.

THE MITRE CORP.

JET PROPULSION LAB

FORD AEROSPACE

FORD AEROSPACE CORP.
LOCKHEED CORP.

THE MITRE CORP.

NAVAL CENTER FOR COST ANALYSIS
UNISYS CORP.

THE JOHNS HOPKINS UNIVERSITY
COMPUTER SCIENCES CORP.
NATIONAL SECURITY AGENCY
COMPUTER SCIENCES CORP.

RMS TECHNOLOGIES

DEPT. OF DEFENSE

SPACE TELESCOPE SCIENCE INST.
OMITRON

UNIVERSITY OF RICHMOND
NASA/GSFC

UNIVERSITY OF MARYLAND
AUBURN UNIVERSITY

JET PROPULSION LAB

IIT RESEARCH INSTITUTE
COMPUTER SCIENCES CORP.
PLANNING RESEARCH CORP.
NASA/GSFC

SOFTWARE DEVELOPMENT CONCEPTS
COMPUTER SCIENCES CORP.
ITALSIEL SPA

PLANNING RESEARCH CORP.
DEPARTMENT OF DEFENSE
CADRE TECHNOLOGIES
MCDONNELL DOUGLAS ASTRONANTICS CO.
COMPUTER SCIENCE CORP.

IBM CORP.

MARTIN MARIETTA CORPORATION
COMPUTER SCIENCES CORP.

A-1

CHENN, PETER UNIVERSITY OF MARYLAND

CHERNOFF, DARLENE COMPUTER SCIENCES CORP.
CHESTER, ROWENA MARTIN MARIETTA ENERGY SYSTEMS
CHIANG, TED FORD AEROSPACE
CHILDERS, TIMOTHY MARTIN MARIETTA

CHU, RICHARD FORD AEROSPACE CO.
CHUNG, ANDREW FAA TECHNICAL CENTER
CHURCH, VIC COMPUTER SCIENCES CORP.
CISNEY, LEE NASA/GSFC

CLARK, DAVID UNISYS CORP.

CLIFTON, CHUCK COMPUTER SCIENCES CORP.
COLAIZZI, DONALD COMPUTER SCIENCES CORP.
COOK, JOHN NASA/GSFC

COUCHOUD, CARL SOCIAL SECURITY ADMINISTRATION
COURT, TERRY HUGHES AIRCRAFT COMPANY
CRAIG, CLYDE AUTOMETRIC, INC.
CREECY, RODNEY HUGHES

CREWS, TERRY LMSC

CRONE, MICHAEL HARRIS CORP.

CROSS, JAMES AUBURN UNIVERSITY
CUESTA, ERNESTO COMPUTER SCIENCES CORP.
CUPAK, JOHN HRB SYSTEMS

CURRY, DAN MITRE CORP.

D’AGOSTINO, JEFF OAO CORP.
DASKALANTONAKIS, MICHAEL

DAVIS, CHARLES TRW

DECKER, WILLIAM COMPUTER SCIENCES CORP.
DELIS, ALEX UNIVERSITY OF MARYLAND
DEUTSCH, MICHAEL HUGHES AIRCRAFT CO.
DIXON, BERNARD NASA/GSFC

DORBAND, JOHN NASA/GSFC

DREW, DAN UNISYS CORP.

DUNIHO, MICKEY NSA

DUNN, NEPOLIA COMPUTER SCIENCES CORP.
DUQUETTE, RICHARD

DUREK, TOM SPC, INC.

DUVALL, LORRAINE DUVALL COMPUTER TECHNOLOGIES, INC.
DVONG, VINNIE NSWC

DYER, MICHAEL IBM/FSD

EBERHART, HERB

EDELSTEIN, E. GRUMMAN DATA SYSTEMS
EDGAR, ERIC HRB — SYSTEMS
EGGERTSEN, KARL NAVAL SHIPS WEAPONS SYSTEM ENG. STATION
EISENHARDT, GEORGE ¢ LOGICON, INC.

ELLIS, WALTER IBM

ELMORE, RALPH COMPUTER SCIENCES CORP.
EMERY, KATHLEEN VITRO CORP.

ENG, EUNICE NASA/GSFC

ESKER, LINDA COMPUTER SCIENCES CORP.
EVANCO, WILLIAM THE MITRE CORP.

EVERS, JAY UNISYS CORP.

FANG, HSIN IBM

FANTASIA, DANIELE UNIVERSITY OF MARYLAND

A-2

FELVER, HENRY
FERGUSON, FRANCES
FESHAMI, BARBARA
FINK, MARY LOUISE
FINNEGAN, KENNETH
FORMANEK, KATHLEEN
FORSYTHE, RON
FOX, STEPHEN
FRANKLIN, JUDE
FRANKS, KELLY
GACUK, PETER
GAFFKE, WILLIAM
GAFFNEY, JOHN
GANNETT, MARYE
GARCIA, ENRIQUE
GARDNER, MICHAEL
GIBSON, JOHN
GILLILAND, DENISE
GILYEAT, COLIN
GIRONE, CHUCK
GODFREY, PARKE
GODFREY, SALLY
GOETTSCHE, CRAIG
GOGIA, B.

GOLDEN, JOHN
GOLDSMITH, LARRY
GOODSON, ADOLPH
GORDON, HAYDEN
GRAFTON, ED
GRAVES, RUSELL
GRAVITTE, JUNE
GREEN, DANIEL
GREEN, SCOTT
GREENBERG, DIANA
GREGORY, SAMUEL
GRIMES, DONNA
GRONDALSKI, JEAN
GROSS, STEPHEN
HALL, GARDINER
HALL, JAMES
HANEY, MODENNA
HARRIS, AL

HARRIS, BERNARD
HARTLEY, JONATHAN
HASSETT, KEVIN
HEASTY, RICHARD
HEBENSTREIT, KARL
HECK, JOANN
HEFFERNAN, HENRY
HEILIG, VICKI
HELLER, GERRY
HENRY-NICKENS, STEPHANIE
HENSON, TROY

IBM

STANFORD TELECOMMUNICATIONS
SRA CORP.

PLANNING RESEARCH CORP.
MARTIN MARIETTA CORP.

MARTIN MARIETTA
NASA/WALLOPS FLIGHT FACILITY
XEROX ADVANCED INFORMATION TECHNOLOGY
EMHART/PRC

NASA/GSFC

SPAR AEROSPACE

PROJECT ENGINEERING, INC.

SPC, INC.

DEPARTMENT OF DEFENSE

JET PROPULSION LAB

COMPUTER SCIENCES CORP.
IBM/SID

STANFORD TELECOMMUNICATIONS INC.
ADVANCED TECHNOLOGY, INC.

GE ASTRO SPACE

UNIVERSITY OF MARYLAND
NASA/GSFC

NASA/GSFC

ENGINEERING & ECONOMY RESEARCH
EASTMAN KODAK CO.

DEPT. OF LABOR

NASA/GSFC

COMPUTER SCIENCES CORP.

LINK FLIGHT SIMULATION CORP.
DEPT. OF DEFENSE

FORD AEROSPACE CORP.

DOD

NASA/GSFC

PRC

OTRI

COMPUTER SCIENCES CORP.
NAVAL CENTER FOR COST ANALYSIS
FORD AEROSPACE CORP.
UNISYS CORP.

MARTIN MARIETTA
LOGICAN, INC.

NASA/GSFC

NASA/GSFC

COMPUTER SCIENCES CORP.
COMPUTER SCIENCES CORP.
LOGICAN, INC.

RMS TECHNOLOGIES, INC.
GCN

IBM

COMPUTER SCIENCES CORP.
NASA/GSFC

IBM CORP.

A-3

HEYLIGER, GEORGE
HIHN, JAIRUS
HILDENBERGER, RUTH
HILL, DONNA
HODGES, WILLIAM
HOLLORAN, PATRICK
HOLMES, BARBARA
HOLOUBEK, DAN
HOQ, N.

HOUSER, WALTER
HOUSTON, FRANK
HOWLE, BILL
HUBER, HARTMUT
HULL, LARRY
HUTCHISON, ROBERTA
JACKSON, LAVERNE
JAHANGIRI, MAJID
JAKAITIS, JOYCE
JAWORSKI, ALLAN
JELETIC, JIM
JESSEN, WILLIAM
JOESTING, DAVID
JOHNSON, DONNA
JOHNSON, RON
JORDAN, LEON
JUDKINS, HENRY
KANG, KYO
KANNAPPAN, SAM
KAPLAN, STEVEN
KASCHAK, PAUL
KELLY, JOHN
KELLY, LISA

KEMP, KATHRYN
KERNAN, KEVIN
KESTER, RUSH
KILSDUNK, THOMAS
KIM, CHRISTINE
KIM, SEUNG

KIRBY, JAMES

KIRK, DANIEL
KLITSCH, GERALD
KNIGHT, JOHN
KOUCHAKDIJIAN, ARA
KOWALCHACK, BONNIE
KRAMER, NANCY
KRAUS, PAUL
KUBARYK, PETER
KUDLINSKI, ROBERT
KUMAR, V.
KURIHARA, TOM
LABAUGH, ROBERT
LAL, NAND

LANDIS, LINDA

COMPUTER TECHNOLOGY ASSOCIATES
JET PROPULSION LAB

MITRE CORP.

NSwWC

BOEING AEROSPACE CO.

SEI

CRMI

LMSC

ENGINEERING & ECONOMY RESEARCH
VETERANS ADMINISTRATION

FOOD & DRUG ADMIN.

NASA/MSFC

NSWC

NASA/GSFC

THE MITRE CORP.

PLANNING RESEARCH CORP.
COMPUTER SCIENCES CORP.
AMERICAN SYSTEMS CORPORATION
SOFTWARE PRODUCTIVITY CONSORTIUM
NASA/GSFC

RCA — ESD

BENDIX FIELD ENGINEERING CORP.
COMPUTER SCIENCES CORP.
COMPUTER SCIENCES CORP.
COMPUTER SCIENCES CORP.

ATLIS FEDERAL SERVICES
SOFTWARE ENGINEERING INSTITUTE
ABI ENTERPRISES

DEPT. OF DEFENSE

NAVAL CENTER FOR COST ANALYSIS
JET PROPULSION LAB

NASA/GSFC

VITRO CORP.

RATIONAL

GTE GOVERNMENT SYSTEMS

DEPT. OF DEFENSE

COMPUTER SCIENCES CORP.
COMPUTER SCIENCES OORP.
SOFTWARE PRODUCTIVITY CONSORTIUM
NASA/GSFC

COMPUTER SCIENCES CORP.

SPC, INC.

UNIVERSITY OF MARYLAND

APPLIED PHYSICS LAB

PRC

COMPUTATIONAL ENGINEERING, INC.
IITRI

NASA/LANGLEY

NASA/STX

U.S. DEPT. OF TRANSPORTATION
MARTIN MARIETTA AEROSPACE CORP.
NASA/GSFC

COMPUTER SCIENCES CORP.

A4

LASKY, JEFFREY
LAVALLEE, DAVID

LAWRENCE-PFLEEZER, SHARI

LEDFORD, RICK
LEE, TOM
LEENHOUTS, KATHLEEN
LEFEVRE, JEANNE
LEFKOWITZ, SHARON
LESAGE, LUCIAN
LIN, CHI

LINDSEY, JOEL

LIU, JEAN

LIU, KUEN-SAN
LLOYD, MICHAEL
LOESH, BOB

LOWE, DAWN
LUCZAK, EDWARD
LUCZAK, RAY
LYTTON, VICTOR
MACCHINI, BRUNO
MACK, JOHN
MALACANE, CHRISTINE
MALHOTRA, SHAN
MANGIERI, MARK
MANN, TIM
MARCINIAK, JOHN
MARESCA, PAUL
MARKUS, CYNTHIA
MARTIN, GEORGE
MASTER, PAT
MATHIASEN, CANDY
MATTI, RUTH
MAURY, JESSE
MCCONNAUGHERY, ED
MCDONALD, BETH
MCGARRY, FRANK
MCGARRY, PETER
MCKEAG, THOMAS
MCKENNA, JOHN
MCLEOD, JOHN
MCQUILLAN, ARIEL
MEESON, REG
MERIFIELD, JAMES
MILLER, JOHN
MIRSCH, CYNTHIA
MITTAL, AJAY
MOHANTY, SIBA
MOHRMAN, CARL
MOLESKI, LAURA
MOLESKI, WALT
MOLKO, PATRICIA
MONTOYA, MARIA
MOORE, MIKE
MOORSHEAD, ART

ROCHESTER INSTITUTE OF TECHNOLOGY
FORD AEROSPACE & COMM. CORP.
GEORGE MASON UNIVERSITY
MCDONNELL DOUGLAS CORP.
NASA/GSFC

GENERAL ELECTRIC

UNISYS CORP.

IIT RESEARCH INSTITUTE

DEPT. OF DEFENSE

JPL

COMPUTER SCIENCES CORP.
COMPUTER SCIENCES CORP.
COMPUTER SCIENCES CORP.
GENERAL DYNAMICS

SYSTEM TECHNOLOGY INSTITUTE
NASA/GSFC

COMPUTER SCIENCES CORP.
COMPUTER SCIENCES CORP.

US DEPT OF AGRICULTURE
UNIVERSITY OF MARYLAND
ARCHITECTURE TECHNOLOGY
THE MITRE CORP.

JPL

JOHNSON SPACE CENTER
COMPUTATIONAL ENGINEERING, INC.
MARCINIAK & ASSOCIATES
ADASOFT, INC.

AMERICAN SYSTEMS CORP.
PROJECT ENGINEERING INC.

IIT RESEARCH INSTITUTE

UNISYS CORP.

NASA/GSFC

PLANNING & ANALYSIS CORP.
DEPT. OF DEFENSE
NASA/GSFC

GENERAL ELECTRIC

HRB — SYSTEMS

NSA

JET PROPULSION LAB
NASA/GSFC

INSTITUTE FOR DEFENSE ANALYSIS
ADVANCED TECHNOLOGY
COMPUTER SCIENCES CORP.
GENERAL ELECTRIC

EER TECHNOLOGIES

QSOFT, INC.

MARTIN MARIETTA ATC
CRMI

NASA/GSFC

JET PROPULSION LAB

MCDONNELL DOUGLAS ASTRONAUTICS CO.

CTA, INC.
WESTINGHOUSE ELECTRIC

MOWERY, ED
MOYLAN, ALDEN
MRENAK, GARY
MUDRONE, JAMES
MULARZ, DIANE
MURPHY, ROBERT
MUSA, JOHN
MYERS, LEANNA
MYERS, PHILIP
NARROW, BERNIE
NG, EDWARD
NGUYEN, BAO
NORCIO, TONY
NORO, MASAMI
O’BRIEN, ROBERT

O’HARA-SCHETTINO, LIZ

O’NEILL, L.
OHLMACHER, JANE
OWENS, AL
OWENS, KEVIN
PAGE, JERRY
PAJERSKI, ROSE
PALMER, JAMES
PARKER, JAMES
PATEL, KANT
PEARSON, BOYD
PERKINS, DOROTHY
PHILLIPS, GAIL
PIETRASANTA, AL
PIETSCH, ILA
PINCOSY, JOHN
PIXTON, JERRY
PLETT, MICHAEL
PLUNKETT, THERESA
POLLACK, JAY
POW, WILLIAM
PRINCE, ANDY
PUGH, DOUGLAS
PUMPHREY, KAREN
PUTNEY, BARBARA
QUANN, EILEEN
QUIMBY, KELVIN
RACINE, GLENN
RANSOM, BERT
RASH, JAMES
RAUTNER, JIM
RAWERS, KEVIN
REEDY, CHRISTOPHER
RICE, RAYMOND
RIGNEY, BRANDON
RITTER, SHEILA
ROBBINS, DON
ROBERTS, BECKY
ROBINSON, MARY

THE MITRE CORP.
COMPUTER SCIENCES CORP.

DEPT. OF DEFENSE

THE MITRE CORP.
NASA/GSFC

AT&T BELL LABORATORIES

U.S. BUREAU OF LABOR STATISTICS

COMPUTER SCIENCES CORP.
BENDIX

JET PROPULSION LAB

HQ UASF/SCTT

UNIVERSITY OF MARYLAND
UNIVERSITY OF MARYLAND
NASA/GSFC

GEORGE MASON UNIVERSITY
AT&T BELL LABS

SOCIAL SECURITY ADM.
NAVAL RESEARCH LAB
PLANNING RESEARCH CORP.
COMPUTER SCIENCES CORP.
NASA/GSFC

APL

IBM

COMPUTER SCIENCES CORP.
NASA/GSFC

NASA/GSFC

COMPUTER SCIENCES CORP.

DEPT. OF DEFENSE

DATA SYSTEMS ANALYSIS
UNISYS CORPORATION
COMPUTER SCIENCES CORP.
DEPT. OF DEFENSE
COMPUTER SCIENCES CORP.

PRS SYSTEMS SERVICES

IOT RESEARCH INSTITUTE/DQT
COMPUTER SCIENCES CORP.
NASA/GSFC

FASTRAK

COMPUTER SCIENCES CORP.
AIRMICS

NASA/GSFC

NASA/GSFC

MOUNTAINET, INC.
LOCKHEED

BETAC CORP.

MCDONNELL DOUGLAS ASTRONAUTICS, CO.

PRC
NASA/GSFC

GTE — GOVERNMENT SYSTEMS

PRC
THE MITRE CORP.

A-6

ROBINSON, RICHARD
ROBINSON, STEVE
ROBISON 1II, W.
ROGERS, KATHY
ROHR, JOHN
ROMBACH, DIETER
ROSS, DON
ROUNDS, CHUCK
ROY, DANIEL
RUCKI, DAN
RUPERT, FRED
RUTEMILLER, OREN
SABIA, STEVE
SABOTIN, ROSA
SALOMON, ARTHUR
SAMSON, DOLLY
SAYANI, HASAN
SCAVETTI, JOSEPH
SCHUBERT, KATHY
SCHULTHEISZ, ROBERT
SCHWARTZ, MICHAEL
SCHWENK, ROBERT
SCIULLO, ED
SCOTT, LEIGHTON
SEAVER, DAVID
SEIDEWITZ, ED
SEIGLE, JEFF
SELVAGE, ROB
SEVER, GEORGE
SEVERINO, TONY
SHANK, DWIGHT
SHEN, VINCENT
SHEPPARD, SYLVIA
SHERE, KEN

SHI, LEON

SHOAN, WENDY
SHUPE, GARY
SHUSTER, DAVID
SHYMAN, STEVEN
SIEG-ROSS, SANDY
SINCLAIR, SEAN
SKINNER, JUDITH
SMITH, DAN

SMITH, KATHRYN
SMITH, LEN

SMITH, PATRICIA
SNYDER, TIM
SOLOMAN, CARL
SOVA, DONALD
SPANGLER, ALAN
SPENCE, BAILEY
SPIEGEL, DOUG
SPIEGEL, MITCHELL
SRIRANGARAJAN, RAJAN

THE MITRE CORPORATION

DYNAMICS RESEARCH CORP.

JET PROPULSION LAB

THE MITRE CORP.

JET PROPULSION LAB

UNIVERSITY OF MARYLAND

IIT RESEARCH INSTITUTE

SRA CORP.

FORD AEROSPACE CORP.

DEPT. OF DEFENSE

FEDERAL HOME LOAN MORTGAGE CORP.
STANFORD TELECOMMUNICATIONS, INC.
NASA/GSFC

COMPUTER SCIENCES CORP.

STANFORD TELECOMMUNICATIONS, INC.
GEORGE MASON UNIVERSITY

ADVANCED SYSTEMS TECH CORPORATION

AMERICAN SYSTEMS CORP.
NASA/LERC

NATIONAL LIBRARY OF MEDICINE
IITRIVECAC

NASA/GSFC

NATIONAL LIBRARY OF MEDICINE
NSA

PROJECT ENGINEERING, INC.
NASA/GSFC

COMPUTER SCIENCES CORP.

U.S. TREASURY/FMS

MARTIN MARIETTA

GENERAL ELECTRIC/RCA
COMPUTER SCIENCES CORP.

MCC

COMPUTER TECHNOLOGY ASSOCIATES
AVTEC SYSTEMS

COMPUTER SCIENCES CORP.
NASA/GSFC

NAVAL DATA AUTOMATION COMMAND
DATA SYSTEMS ANALYSTS
INSTITUTE FOR DEFENSE ANALYSES
U.S. EPA

COMPUTER SCIENCES CORP.

JET PROPULSION LAB

FORD AEROSPACE CORP.
NASA/LARC

COMPUTER SCIENCES CORP.
NSWC

COMPUTER SCIENCES CORP.
NASA/GSFC

NASA/HQ

IBM

COMPUTER SCIENCES CORP.
NASA/GSFC

GTE SYSTEMS

THE MITRE CORP.

A7

STANLEY, CAROLYN
STARK, MICHAEL
STEINBACHER, JODY
STEINBERG, SANDEE
STEVENSON, JEFF
STEWART, CHARLES
STOKES, SAM
STRAUB, PABLO
STUMPO, PAUL
SUBOTIN, ROSA
SUD, VED

SUN, ALICE

SWAIN, BARBARA
SYMMES, BRIAN
SZULEWSKI, PAUL
TASAKI, KENI
TAUSWORTHE, ROBERT
TAYLOR, TOM
THACKERY, KENT
THEOFANOS, MARY
THOMPSON, JIM
THOMPSON, JOHN
THOMPSON, WILLIAM
THORNTON, THOMAS
THRASYBULE, WESNER
TOMPKINS, JEFF
TRAN, LAN
TREFFER, LEIGH
TSOUNOS, ANDREW
ULERY, BRADFORD
USAVAGE, PAUL
VALETT, JON
VALETT, SUSAN
VAN DITTA, MARK
VERNACCHIO, AL
VOGEL, MICHAEL
WALIGORA, SHARON
WALKER, GARY
WALLACE, CHARLES
WALTMAN, ROBERT
WATERMAN, BOB
WATSON, STAN
WEBSTER, THOMAS
WEISMAN, DAVID
WEISS, DAVE
WELBORN, RICHARD
WELLS, CYNTHIA
WENDE, CHARLES
WHEELER, JIM
WILLIAMSON, DAVID
WILLIAMSON, PHIL
WILSON, JEAN
WONG, WILLIAM
WOOD, RICHARD

MARTIN MARIETTA
NASA/GSFC

JET PROPULSION LAB
COMPUTER SCIENCES CORP.
MARTIN MARIETTA

CRMI

THE MITRE CORP.
UNIVERSITY OF MARYLAND
DEPT. OF DEFENSE
COMPUTER SCIENCES CORP.
MITRE CORP.

THE MITRE CORP.
UNIVERSITY OF MARYLAND
U.S. EPA

C.S. DRAPER LABS, INC.
NASA/GSFC

JPL

BUREAU OF THE CENSUS
PLANNING ANALYSIS CORP.
MARTIN MARIETTA ENERGY SYSTEMS
FREDDIE MAC

FORD AEROSPACE

NSWC

JPL

COMPUTER SCIENCES CORP.
COMPUTER SCIENCES CORP.
JET PROPULSION LAB.

IITRI

SEI

UNIVERSITY OF MARYLAND
GENERAL ELECTRIC
NASA/GSFC

NASA/GSFC

INFORMATION SYSTEMS & NETWORKS CORP.

NASA/GSFC

PRC

COMPUTER SCIENCES CORP.

JET PROPULSION LAB

RAYTHEON SERVICE CO.

IBM

VITRO CORP.

NASA/GSFC

COMPUTATIONAL ENGINEERING INC.
UNISYS CORP.

SPC, INC.

STANFORD TELECOMMUNICATIONS, INC.
COMPUTATIONAL ENGINEERING, INC.
NASA/GSFC

NAVAL DATA AUTOMATION COMMAND
ITRI

BOEING COMPUTER SUPPORT SERVICES
MDAC/KSC

NATIONAL INSTITUTE OF STANDARDS & TECH.

COMPUTER SCIENCES CORP.

WOOD, TERRI
WRIGHT, CYNTHIA
WU, SABINA

WU, YEN
YAAKOV, BEN-AMI
YANG, CHAO

YEE, MARY
YENCHZ, MARTIN
YU, STELLA
YUNG, K
ZAVELER, SAUL
ZELKOWITZ, MARV
ZIMET, BETH
ZYGIELBAUM, ART

NASA/GSFC

THE MITRE CORP.

IITRI

IITRI

JET PROPULSION LAB
NASA/GSFC

LOGICON, INC.
WESTINGHOUSE

COMPUTER SCIENCES CORP.
COMPUTER SCIENCES CORP.
US AIR FORCE

UNIVERSITY OF MARYLAND
COMPUTER SCIENCE CORP.
JET PROPULSION LAB

A9

APPENDIX B

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in
this bibliography are organized into two groups. The first
group is composed of documents issued by the Software Engi-
neering Laboratory (SEL) during its research and development
activities. The second group includes materials that were
published elsewhere but pertain to SEL activities.

EL-OR NATED

SEL-76-001, Proceedings From the First Summer Software Engi-
neering Workshop, August 1976

SEL-77-002, Proceedings From the Second Summer Software En-
gineering Workshop, September 1977

SEL-77-004, A Demonstration of AXES for NAVPAK, M. Hamilton
and S. Zeldin, September 1977

SEL-77-005, FC NAVPAK ign Specifi ions Lan

Study, P. A. Scheffer and C. E. Velez, October 1977
SEL-78-005, Pr i F Thir mmer ftware Engi-
neering Workshop, September 1978

SEL~78-006, F ftware Engin ing R rch R iremen
Analysis Study, P. A. Scheffer and C. E. Velez, November 1978
SEL-78-007, Applicability of the Rayleigh Curve to the SEL
Environment, T. E. Mapp, December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program
(SAP) User's Guide (Revision 3), W. J. Decker and

W. A. Taylor, July 1986

SEL-79-002, The Software Engineering Laboratory: Relation-

ship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, mmon ftware M R itor MR) System

Description and User's Guide, C. E. Goorevich, A. L. Green,
and S. R. Waligora, August 1979

SEL-79-004, Eval ion of th in Farber, an rdon Pro-
gram Design Lanquage (PDL) in the Goddard Space Flight Cen-
ter (GSFC) Code 580 Software Design Environment,

C. E. Goorevich, A. L. Green, and W. J. Decker, September
1979

B-1
3913

SEL-79-005, Proceedings From the Fourth Summer Software En-
gineering Workshop, November 1979

SEL-80-002, Multi-Level Expression Design Language-
Requirement Level (MEDL-R) System Evaluation, W. J. Decker

and C. E. Goorevich, May 1980

SEL- 80 003, _Mﬂm_mwg_iﬁj_oimd_mm

-of -
ggmgatlplllgx s;udx, T. Welden, M. McClellan, and
P. Liebertz, May 1980
SEL-80-005, A Reliabili 1,
A. M, Miller, November 1980
SEL-80-006, Proceedings From the Fifth Annual Software Engi-

neering Workshop, November 1980
SEL-80-007, An_Azp_mﬁa_l_Q__S_el_e_c_t_ed_QQﬂz_&emm_ﬂ__a_

tion Models for Software Systems, J. F. Cook and

F. E. McGarry, December 1980

SEL-81-008, Cost and Reliability Estimation Models (CAREM)
User's Guide, J. F. Cook and E. Edwards, February 1981
SEL-81-009, in r rammer Work-
bench Phase 1 Evalug; Qg W. J. Decker and F. E. McGarry,
March 1981

SEL-81-011, Evaluating Software Development by Analysis of
Change Data, D. M. Weiss, November 1981

SEL-81-012, Th 1 l for Effor ri-

bution Over the Life of Mgd u Scale Software §z§§§m§, G 0.

Picasso, December 1981

SEL-81-013, Pr in From th ixth Annual Software Engi-
neering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering
Data in the Software Engineering Laboratory (SEL),

A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-81-101, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., August 1982

SEL-81-104, The Software Engineering Laboratory, D. N. Card,

F. E. McGarry, G. Page, et al., February 1982

9913

SEL-81-107, Software Engineering Laboratory (SEL) Compendium
of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,
February 1982

SEL-81-110, Ev j n Verifi ion an
Vali i i namics, G. Page,
F. E. McGarry, and D. N. Card, June 1985

SEL-81-205, Recommended Approach to Software Development,
F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SEL-82-001, Evaluation of Management Measures of Software
Development, G. Page, D. N. Card, and F. E. McGarry,
September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers: Vol-
ume 1, July 1982

SEL-82-007, Proceedings From the Seventh Annual Software
Engineering Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of
Changes: The Data From the Software Engineering Laboratory,
V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program
AP m ipti vision 1), W. A. Taylor and

W. J. Decker, April 1985

SEL-82-105, r w i ring L r r
Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,
October 1983

SEL-82-706, Ann Bibliograph f ftware Engineerin
Laboratory Literature, G. Heller, January 1989
SEL-83-001, An Appr h ftwar

F. E. McGarry, G. Page, D. N. Card, et al., February 1984

SEL-83-002, M r nd Metri for ftwar
D. N. Card, F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers:; Vol-
ume II, November 1983

SEL-83-006, Monitorin ftware Development Thr h Dynami
Variables, C. W. Doerflinger, November 1983

9913

SEL-83-007, Proceedings From the Eighth Annual Software En-

gineering Workshop, November 1983
SEL-84-001, Manager's Handbook for Software Development,

W. W. Agresti, F. E. McGarry, D. N. Card, et al., April 1984

SEL-84-003, 1n_gsL;gat1gn_gi_S2gg1ingtlgn_ugasn_gi_igs_t_g
SgﬁLﬂg;g_Eng;ngﬁzlng_hangﬂtgxx_LSELl, W. W. Agresti,
V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, i in An ware Engi-
neering Workshop, November 1984

SEL-85-001, A Comparison of Software Verification Tech-
niques, D. N. Card, R. W, Selby, Jr., F. E. McGarry, et al.,
April 1985

SEL-85-002, Ada_I;a;n;ng_E_alni;1Qn_and_nggmmendatlg_a_E_g_
R vel T ., R. Murphy
and M, Stark, October 1985

SEL-85-003, Collected Software Engineering Papers: Vol-
ume III, November 1985

SEL-85-004, Evaluations of Software Technologies: Testing,
CLEANRQOM, and Metrics, R. W. Selby, Jr., May 1985

SEL-85-005, ftware Verifi ion an ing, D. N. Card,
C. Antle, and E. Edwards, December 1985

SEL-85-006, Pr i m_th nth Annual ftware Engi-
neering Workshop, December 1985

SEL-86-001, Pr mmer'’ k £ light Dynami ft-
R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development,
E. Seidewitz and M. Stark, August 1986

SEL-86-003, Flight Dynamics System Software Development En-
vironment Tutorial, J. Buell and P. Myers, July 1986

SEL-86-004, 1 ftware Engineering P rs; Vol-
ume IV, November 1986

SEL-86-005, Measuring Software Design, D. N. Card, October
1986

9913

SEL-86-006, Proceedings From the Eleventh Annual Software

Engineering Workshop, December 1986
SEL-87-001, Product Assurance Policies and Procedures for

Flight Dynamics Software Development, S. Perry et al., March
1987

SEL-87-002, Ada Style Guide (Version 1.1), E. Seidewitz
et al., May 1987

SEL-87-003, idelin for in h m i ifica-
tion Model (CSM), W. W. Agresti, June 1987

SEL-87-004, Assessing the Ada Design Process and Its Impli-
cations: A Case Study, S. Godfrey, C. Brophy, et al.,

July 1987

SEL-87-008, Data Collection Procedures for the Rehosted SEL
Database, G. Heller, October 1987

SEL-87-009, Collected Software Engineering Papers: Volume V,

S. DeLong, November 1987

SEL-87-010, Proceedings From the Twelfth Annual Software En-—
gineering Workshop, December 1987

SEL-88-001, System Testing of a Production Ada Project: The
GRODY Study, J. Seigle and Y. Shi, November 1988

SEL-88-002, Collected Software Engineering Papers: Vol-
ume VI, November 1988

SEL-88-003, Evolution of Ada Technology in the Flight Dynam-
ics Area: Design Phase Analysis, K. Quimby and L. Esker,
December 1988

SEL-RELATED LITERATURE

4pgresti, W. W., V. E. Church, D. N. Card, and P. L. Lo,
"Designing With Ada for Satellite Simulation: A Case Study,"
Proceedings of the First International Symposium on Ada for
the .NASA Space Station, June 1986

2pgresti, W. W., F. E. McGarry, D. N. Card, et al., "Meas-

uring Software Technology,” Brogram Transformation and Pro-
gramming Environments. New York: Springer-Verlag, 1984

9913

lgailey, J. W., and V. R. Basili, "A Meta-Model for Soft-
ware Development Resource Expenditures,” Proceedings of the
Fifth In nati nf ware Engineerin

New York: IEEE Computer Society Press, 1981

lpasili, V. R., "Models and Metrics for Software Manage-

ment and Engineering,” ASME Advances in Computer Technology,
January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software
Man men nd Engi ring. New York: IEEE Computer Society
Press, 1980 (also designated SEL-80-008)

3Basili, V. R., "Quantitative Evaluation of Software Meth-
odology," Proceedings of the First Pan-Pacific Computer Con-
ference, September 1985

lpasili, V. R., and J. Beane, "Can the Parr Curve Help
With Manpower Distribution and Resource Estimation Prob-

lems?,” Journal of Systems and Software, February 1981,
vol. 2, no. 1

lpasili, V. R., and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,"

Journal of Systems and Software, February 1981, vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relation-
ships Between Effort and Other Variables in the SEL,"
Proceedings of the International Computer Software and Ap-
plications Conference, October 1985

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction
and Reliability Assessment in the SEL Environment, University
of Maryland, Technical Report TR-1699, Augqust 1986

2Basili, V. R., and B. T. Perricone, "Software Errors and
Complexity: An Empirical Investigation," Communications of
the ACM, January 1984, vol. 27, no. 1

lpasili, V. R., and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,"
Proceedings of the ACM SIGMETRICS Symposium/Workshop: Qual-
ity Metrics, March 1981

Basili, V. R., and J. Ramsey, Structural Coverage of Func-
tional Testing, University of Maryland, Technical Report
TR-1442, September 1984

9913

3Basili, V. R., and C. L. Ramsey, “ARROWSMITH-P--A Proto-
type Expert System for Software Engineering Management,”
i X ms i vernmen

Symposium, October 1985

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-
ures for Software Development,” Proceedings of the Workshop
on Quantitative Software Models for Reliability, Complexity,
and Cost. New York: IEEE Computer Society Press, 1979

5Basili, V. and H. D. Rombach, "Tailoring the Software
Process to Project Goals and Environments," Proceedings of

h h International nferen n ftware Engineering,
March 1987

5Basili, V. and H. D. Rombach, “T A M E: Tailoring an Ada
Measurement Environment," Pr in £f th int A n-
ference, March 1987

SBasili, V. and H. D. Rombach, "T A M E: Integrating Meas-
urement Into Software Environments,” University of Maryland,
Technical Report TR-1764, June 1987

6Basili, V. R., and H. D. Rombach, “The TAME Project:
Towards Improvement-Oriented Software Environments,” IEEE
Transaction n ftware Engineering, June 1988

2Basili, V. R., R. W. Selby, and T. Phillips, "Metric Anal-
ysis and Data Validation Across FORTRAN Projects,” IEEE
Transactions on Software Engineering, November 1983

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use
of an Environments's Characteristic Software Metric Set,"
Pr in f the Eighth International nferen n ft-
ware Engineering. New York: IEEE Computer Society Press,
1985

Basili, V. R., and R. W. Selby, Jr., Comparing the Effective-

ness of Software Testing Strategies, University of Maryland,
Technical Report TR-1501, May 1985

3Basili, V. R. and R. W. Selby "Four Applications of a
Software Data Collection and Analysis Methodology," Pr -
ings of the NATO Advanced Study Institute, August 1985

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, “"Ex-
perimentation in Software Engineering," IEEE Transactions on
Software Engineering, July 1986

9913

5Basili, V. and R. Selby, "Comparing the Effectiveness of
Software Testing Strategies," IEEE Transactions on Software
Engineering, December 1987

2Basili, V. R., and D. M. Weiss, A Methodology for Collecting

Valid Software Engineering Data, University of Maryland, Tech-
nical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, "A Methodology for Collect-
ing Valid Software Engineering Data,” I n ion
Software Engineering, November 1984

lpasili, V. R., and M. V. Zelkowitz, "The Software Engi-

neering Laboratory: Objectives,"” Proceedings of the Fif-
teenth Annual Conference on Computer Personnel Research,

August 1977

Basili, V. R., and M. V. Ze1kow1tz, *Designing a Software
Measurement Experiment,*® h ftw Lif

Cycle Management Workshop, September 1977

lpasili, V. R., and M. V. Zelkowitz, "Operation of the Soft-
ware Engineering Laboratory," Proceedings of the Second Soft-
ware Life Cycle Management Workshop, August 1978

lpasili, V. R., and M. V. Zelkowitz, "Measuring Software
Development Characteristics in the Local Environment," Com-

puters and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development, " in hird Interna-

ion nf n n ware Engineering. New York: IEEE
Computer Society Press, 1978

5Brophy, C., W. Agresti, and V. Basili, "Lessons Learned
in Use of Ada-Oriented Design Methods," Proceedings of the
Joint Ada Conference, March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili,
"Lessons Learned in the Implementation Phase of a Large Ada
Project," Pr in £ the Washin n A Technical
ference, March 1988

2card, D. N., "Early Estimation of Resource Expenditures and
Program Size,"” Computer Sciences Corporation, Technical Memo-
randum, June 1982

2card, D. N., "Comparison of Regression Modeling Techniques
for Resource Estimation,"” Computer Sciences Corporation,
Technical Memorandum, November 1982

B-8
9913

3card, D. N., "A Software Technology Evaluation Program,”

Annais do XVIII Congresso Nacional de Informatica, October
1985

5card, D. and W. Agresti, "Resolving the Software Science
Anomaly," The Journal of Systems and Software, 1987

6Ccard, D. N., and W. Agresti, "Measuring Software Design
Complexity,” The Journal of Systems and Software, June 1988

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan,
A Software Engineering View of Flight Dynamics Analysis
System,"* Parts I and II, Computer Sciences Corporation,
Technical Memorandum, February 1984

4card, D. N., V. E. Church, and W. W. Agresti, "An Empiri-
cal Study of Software Design Practices,"” IEEE Transactions
on Software Engineering, February 1986

Card, D. N., Q. L. Jordan, and V. E. Church, "Characteris-
tics of FORTRAN Modules, " Computer Sciences Corporation,
Technical Memorandum, June 1984

S5card, D., F. McGarry, and G. Page, "Evaluating Software
Engineering Technologies, " Tran ion W
Engineering, July 1987

3card, D. N., G. T. Page, and F. E. McGarry, "Criteria for

Software Modularization," Proceedings of the Eighth Interna-
tional Conference on Software Engineering. New York: IEEE
Computer Society Press, 1985

lchen, E., and M. V. Zelkowitz, "Use of Cluster Analysis

To Evaluate Software Engineering Methodologies," Proceedings
f the Fifth International feren n ftware Engineer-

ing. New York: IEEE Computer Society Press, 1981

4Church, V. E., D. N. Card, W. W. Agresti, and
Q. L. Jordan, "An Approach for Assessing Software Proto-
types," ACM Software Engineering Notes, July 1986

2poerflinger, C. W., and V. R. Basili, "Monitoring Software

Development Through Dynamic Variables," Proceedings of the
venth International m r ftware and Application

Conference. New York: IEEE Computer Society Press, 1983
5Doub1eday, D., "ASAP: An Ada Static Source Code Analyzer

Program," University of Maryland, Technical Report TR-1895,
August 1987 (NOTE: 100 pages long)

9913

6Godfrey, S. and C. Brophy, "Experiences in the Implementa-

tion of a Large Ada Project,” Proceedings of the 1988
Washington Ada Symposium, June 1988
Hamilton, M., and §. Zeldin, A Demonstration ES for

NAVPAK, Higher Order Software, Inc., TR-9, September 1977
(also designated SEL-77-005)

Jeffery, D. R., and V. Basili, "Characterizing Resource
Data: A Model for Logical Association of Software Data,"
University of Maryland, Technical Report TR-1848, May 1987

6Jeffery, D. R., and V. R. Basili, "Validating the TAME

Resource Data Model,"” Proceedings of the Tenth International
Conference on Software Engineering, April 1988

SMark, L. and H. D. Rombach, "A Meta Information Base for
Software Engineering," University of Maryland, Technical
Report TR-1765, July 1987

6Mark, L. and H. D. Rombach, *Generating Customized Soft-
ware Engineering Information Bases From Software Process and

Product Specifications," Proceedings of the 22nd Annual
H ii i nferen n m ien , January
1989

5McGarry, F. and W. Agresti, "Measuring Ada for Software
Development in the Software Eng1neer1ng Laboratory (SEL),
waii In national n-

ference Qn System Sciences, January 1988

3McGarry, F. E., J. Valett, and D. Hall, "Measuring the
Impact of Computer Resource Quality on the Software Develop-

ment Process and Product," Proceedings of the Hawaiian Inter-
national Conference on System Sciences, January 1985

National Aeronautics and Space Administration (NASA), NASA

Software Research Technology Workshop (Proceedings), March
1980

3Page, G., F. E. McGarry, and D. N. Card, "A Practical Ex-
perience With Independent Verification and Validation,"

in f the Eighth national m r ftwar
gnd Applications Conference, November 1984

5Ramsey, C. and V. R. Basili, "An Evaluation of Expert Sys-
tems for Software Engineering Management," University of
Maryland, Technical Report TR-1708, September 1986

9913

3Ramsey, J., and V. R. Basili, "Analyzing the Test Process
Using Structural Coverage,” Proceedings of the Eighth Inter-
national Conference on Software Engineering. New York:

IEEE Computer Society Press, 1985

SrRombach, H. D., "A Controlled Experiment on the Impact of
Software Structure on Maintainability," IEEE Transactions on
Software Engineering, March 1987

6Rombach, H. D., and V. R. Basili, "Quantitative Assessment
of Maintenance: An Industrial Case Study, " Proceedings From
the Conference on Software Maintenance, September 1987

6rombach, H. D., and L. Mark, "Software Process and Prod-
uct Specifications: A Basis for Generating Customized SE
Information Bases," Proceedings of the 22nd Annual Hawaii
International Conference on System Sciences, January 1989

5geidewitz, E., "General Object-Oriented Software Develop-
ment: Background and Experience,” Proceedings of the 21st
Hawaii International Conference on System Sciences, January
1988

6seidewitz, E., "General Object-Oriented Software Develop-

ment with Ada: A Life Cycle Approach,” Proceedings of the
CASE Technology Conference, April 1988

6geidewitz, E., "Object-Oriented Programming in Smalltalk
and Ada," Proceedings of the 1987 Conference on Object-
Oriented Programming Systems, Languages, and Applications,
October 1987

4geidewitz, E., and M. Stark, "Towards a General Object-
Oriented Software Development Methodology," Proceedings of
the First International Symposium on Ada for the NASA Space
Station, June 1986

Stark, M., and E. Seidewitz, "Towards a General Object-
Oriented Ada Lifecycle," Proceedings of the Joint Ada Con-
ference, March 1987

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL
Software Development Data, Data and Analysis Center for
Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-
dium, Data and Analysis Center for Software, Special Publi-
cation, April 1981

9913

Svalett, J. and F. McGarry, "A Summary of Software Measure-
ment Exper1ences in the Software Eng1neer1ng Laboratory,
in he 21 1l Haw n ional nfer-

ence on System Sciences, January 1988

3Wweiss, D. M., and V. R. Basili, "Evaluating Software De-
velopment by Analysis of Changes: Some Data From the Soft-
ware Eng1neer1ng Laboratory,” 1 n ftwar

Engineering, February 1985
SWu, L., V. Basili, and K. Reed, "A Structure Coverage Tool

for Ada Software Systems," Proceedings of the Joint Ada Con-
ference, March 1987

lzelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects,” i f the Twelfth f n n

n isti ience. New York:
IEEE Computer Society Press, 1979

2zelkowitz, M. V., "Data Collection and Evaluat1on for Ex-

per*mental Computer Science Research,” Empirical Foundations
for Computer and Information Science (proceedings),

November 1982

6Zelkowitz, M. V., "The Effectiveness of Software Proto-

typing: A Case Study," Proceedings of the 26th Annual Tech-

nical ium he Washin n, D ha r he ACM,
June 1987

6Zelkow1tz, M V., "Resource Utilization During Software

Development, " Journal of Systems and Software, 1988

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of
a Software Measurement Facility,"” Proceedings of the Soft-

ware Life Cycle Management Workshop, September 1977

NOTES:

1This article also appears in SEL-82-004, Collected Soft-

ware Engineering Papers; Volume I, July 1982.

2This article also appears in SEL- 83 003, Collected Soft-
ware Engineering Papers: Volume » November 1983.

3This article also appears in SEL-85-003, Collected Soft-

ware Engineering Papers; Volume III, November 1985.

4This article also appears in SEL-86-004, Collected Soft-—

ware Engineering Papers: Volume 1V, November 1986.

9913

s in SEL-87-009, ft-

5This article also appear
w Engineeri : Vv, November 1987.
6This article also appears in SEL-88-002, Collected Soft-
W i i 1 v VI, November 1988.

B-13

9913

